Spaces:
Runtime error
Runtime error
File size: 12,666 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import copy
import random
import torch
from imaginaire.datasets.paired_videos import Dataset as VideoDataset
from imaginaire.model_utils.fs_vid2vid import select_object
from imaginaire.utils.distributed import master_only_print as print
class Dataset(VideoDataset):
r"""Paired video dataset for use in few-shot vid2vid.
Args:
cfg (Config): Loaded config object.
is_inference (bool): In train or inference mode?
sequence_length (int): What sequence of images to provide?
few_shot_K (int): How many images to provide for few-shot?
"""
def __init__(self, cfg, is_inference=False, sequence_length=None,
few_shot_K=None, is_test=False):
self.paired = True
# Get initial few shot K.
if few_shot_K is None:
self.few_shot_K = cfg.data.initial_few_shot_K
else:
self.few_shot_K = few_shot_K
# Initialize.
super(Dataset, self).__init__(
cfg, is_inference, sequence_length=sequence_length, is_test=is_test)
def set_inference_sequence_idx(self, index, k_shot_index,
k_shot_frame_index):
r"""Get frames from this sequence during inference.
Args:
index (int): Index of inference sequence.
k_shot_index (int): Index of sequence from which k_shot is sampled.
k_shot_frame_index (int): Index of frame to sample.
"""
assert self.is_inference
assert index < len(self.mapping)
assert k_shot_index < len(self.mapping)
assert k_shot_frame_index < len(self.mapping[k_shot_index])
self.inference_sequence_idx = index
self.inference_k_shot_sequence_index = k_shot_index
self.inference_k_shot_frame_index = k_shot_frame_index
self.epoch_length = len(
self.mapping[self.inference_sequence_idx]['filenames'])
def set_sequence_length(self, sequence_length, few_shot_K=None):
r"""Set the length of sequence you want as output from dataloader.
Args:
sequence_length (int): Length of output sequences.
few_shot_K (int): Number of few-shot frames.
"""
if few_shot_K is None:
few_shot_K = self.few_shot_K
assert isinstance(sequence_length, int)
assert isinstance(few_shot_K, int)
if (sequence_length + few_shot_K) > self.sequence_length_max:
error_message = \
'Requested sequence length (%d) ' % (sequence_length) + \
'+ few shot K (%d) > ' % (few_shot_K) + \
'max sequence length (%d). ' % (self.sequence_length_max)
print(error_message)
sequence_length = self.sequence_length_max - few_shot_K
print('Reduced sequence length to %s' % (sequence_length))
self.sequence_length = sequence_length
self.few_shot_K = few_shot_K
# Recalculate mapping as some sequences might no longer be useful.
self.mapping, self.epoch_length = self._create_mapping()
print('Epoch length:', self.epoch_length)
def _create_mapping(self):
r"""Creates mapping from idx to key in LMDB.
Returns:
(tuple):
- self.mapping (dict): Dict of seq_len to list of sequences.
- self.epoch_length (int): Number of samples in an epoch.
"""
# Create dict mapping length to sequence.
length_to_key, num_selected_seq = {}, 0
has_additional_lists = len(self.additional_lists) > 0
for lmdb_idx, sequence_list in enumerate(self.sequence_lists):
for sequence_name, filenames in sequence_list.items():
if len(filenames) >= (self.sequence_length + self.few_shot_K):
if len(filenames) not in length_to_key:
length_to_key[len(filenames)] = []
if has_additional_lists:
obj_indices = self.additional_lists[lmdb_idx][
sequence_name]
else:
obj_indices = [0 for _ in range(len(filenames))]
length_to_key[len(filenames)].append({
'lmdb_root': self.lmdb_roots[lmdb_idx],
'lmdb_idx': lmdb_idx,
'sequence_name': sequence_name,
'filenames': filenames,
'obj_indices': obj_indices,
})
num_selected_seq += 1
self.mapping = length_to_key
self.epoch_length = num_selected_seq
# At inference time, we want to use all sequences,
# irrespective of length.
if self.is_inference:
sequence_list = []
for key, sequences in self.mapping.items():
sequence_list.extend(sequences)
self.mapping = sequence_list
return self.mapping, self.epoch_length
def _sample_keys(self, index):
r"""Gets files to load for this sample.
Args:
index (int): Index in [0, len(dataset)].
Returns:
key (dict):
- lmdb_idx (int): Chosen LMDB dataset root.
- sequence_name (str): Chosen sequence in chosen dataset.
- filenames (list of str): Chosen filenames in chosen sequence.
"""
if self.is_inference:
assert index < self.epoch_length
chosen_sequence = self.mapping[self.inference_sequence_idx]
chosen_filenames = [chosen_sequence['filenames'][index]]
chosen_obj_indices = [chosen_sequence['obj_indices'][index]]
k_shot_chosen_sequence = self.mapping[
self.inference_k_shot_sequence_index]
k_shot_chosen_filenames = [k_shot_chosen_sequence['filenames'][
self.inference_k_shot_frame_index]]
k_shot_chosen_obj_indices = [k_shot_chosen_sequence['obj_indices'][
self.inference_k_shot_frame_index]]
# Prepare few shot key.
few_shot_key = copy.deepcopy(k_shot_chosen_sequence)
few_shot_key['filenames'] = k_shot_chosen_filenames
few_shot_key['obj_indices'] = k_shot_chosen_obj_indices
else:
# Pick a time step for temporal augmentation.
time_step = random.randint(1, self.augmentor.max_time_step)
required_sequence_length = 1 + \
(self.sequence_length - 1) * time_step
# If step is too large, default to step size of 1.
if required_sequence_length + self.few_shot_K > \
self.sequence_length_max:
required_sequence_length = self.sequence_length
time_step = 1
# Find valid sequences.
valid_sequences = []
for sequence_length, sequences in self.mapping.items():
if sequence_length >= required_sequence_length + \
self.few_shot_K:
valid_sequences.extend(sequences)
# Pick a sequence.
chosen_sequence = random.choice(valid_sequences)
# Choose filenames.
max_start_idx = len(chosen_sequence['filenames']) - \
required_sequence_length
start_idx = random.randint(0, max_start_idx)
end_idx = start_idx + required_sequence_length
chosen_filenames = chosen_sequence['filenames'][
start_idx:end_idx:time_step]
chosen_obj_indices = chosen_sequence['obj_indices'][
start_idx:end_idx:time_step]
# Find the K few shot filenames.
valid_range = list(range(start_idx)) + \
list(range(end_idx, len(chosen_sequence['filenames'])))
k_shot_chosen = sorted(random.sample(valid_range, self.few_shot_K))
k_shot_chosen_filenames = [chosen_sequence['filenames'][idx]
for idx in k_shot_chosen]
k_shot_chosen_obj_indices = [chosen_sequence['obj_indices'][idx]
for idx in k_shot_chosen]
assert not (set(chosen_filenames) & set(k_shot_chosen_filenames))
assert len(chosen_filenames) == self.sequence_length
assert len(k_shot_chosen_filenames) == self.few_shot_K
# Prepare few shot key.
few_shot_key = copy.deepcopy(chosen_sequence)
few_shot_key['filenames'] = k_shot_chosen_filenames
few_shot_key['obj_indices'] = k_shot_chosen_obj_indices
# Prepre output key.
key = copy.deepcopy(chosen_sequence)
key['filenames'] = chosen_filenames
key['obj_indices'] = chosen_obj_indices
return key, few_shot_key
def _prepare_data(self, keys):
r"""Load data and perform augmentation.
Args:
keys (dict): Key into LMDB/folder dataset for this item.
Returns:
data (dict): Dict with all chosen data_types.
"""
# Unpack keys.
lmdb_idx = keys['lmdb_idx']
sequence_name = keys['sequence_name']
filenames = keys['filenames']
obj_indices = keys['obj_indices']
# Get key and lmdbs.
keys, lmdbs = {}, {}
for data_type in self.dataset_data_types:
keys[data_type] = self._create_sequence_keys(
sequence_name, filenames)
lmdbs[data_type] = self.lmdbs[data_type][lmdb_idx]
# Load all data for this index.
data = self.load_from_dataset(keys, lmdbs)
# Apply ops pre augmentation.
data = self.apply_ops(data, self.pre_aug_ops)
# Select the object in data using the object indices.
data = select_object(data, obj_indices)
# Do augmentations for images.
data, is_flipped = self.perform_augmentation(data, paired=True, augment_ops=self.augmentor.augment_ops)
# Create copy of keypoint data types before post aug.
# kp_data = {}
# for data_type in self.keypoint_data_types:
# new_key = data_type + '_xy'
# kp_data[new_key] = copy.deepcopy(data[data_type])
# Create copy of keypoint data types before post aug.
kp_data = {}
for data_type in self.keypoint_data_types:
new_key = data_type + '_xy'
kp_data[new_key] = copy.deepcopy(data[data_type])
# Apply ops post augmentation.
data = self.apply_ops(data, self.post_aug_ops)
data = self.apply_ops(data, self.full_data_post_aug_ops, full_data=True)
# Convert images to tensor.
data = self.to_tensor(data)
# Pack the sequence of images.
for data_type in self.image_data_types:
for idx in range(len(data[data_type])):
data[data_type][idx] = data[data_type][idx].unsqueeze(0)
data[data_type] = torch.cat(data[data_type], dim=0)
# Add keypoint xy to data.
data.update(kp_data)
data['is_flipped'] = is_flipped
data['key'] = keys
return data
def _getitem(self, index):
r"""Gets selected files.
Args:
index (int): Index into dataset.
Returns:
data (dict): Dict with all chosen data_types.
"""
# Select a sample from the available data.
keys, few_shot_keys = self._sample_keys(index)
data = self._prepare_data(keys)
few_shot_data = self._prepare_data(few_shot_keys)
# Add few shot data into data.
for key, value in few_shot_data.items():
data['few_shot_' + key] = few_shot_data[key]
# Apply full data ops.
if self.is_inference:
if index == 0:
pass
elif index < self.cfg.data.num_workers:
data_0 = self._getitem(0)
if 'common_attr' in data_0:
self.common_attr = data['common_attr'] = \
data_0['common_attr']
else:
if hasattr(self, 'common_attr'):
data['common_attr'] = self.common_attr
data = self.apply_ops(data, self.full_data_ops, full_data=True)
if self.is_inference and index == 0 and 'common_attr' in data:
self.common_attr = data['common_attr']
return data
|