Spaces:
Runtime error
Runtime error
File size: 19,619 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import numpy as np
import cv2
import torch
from scipy.optimize import curve_fit
from scipy.signal import medfilt
import warnings
from imaginaire.utils.io import get_checkpoint
def connect_face_keypoints(resize_h, resize_w, crop_h, crop_w, original_h,
original_w, is_flipped, cfgdata, keypoints):
r"""Connect the face keypoints to edges and draw the sketch.
Args:
resize_h (int): Height the input image was resized to.
resize_w (int): Width the input image was resized to.
crop_h (int): Height the input image was cropped.
crop_w (int): Width the input image was cropped.
original_h (int): Original height of the input image.
original_w (int): Original width of the input image.
is_flipped (bool): Is the input image flipped.
cfgdata (obj): Data configuration.
keypoints (NxKx2 numpy array): Facial landmarks (with K keypoints).
Returns:
(list of HxWxC numpy array): Drawn label map.
"""
if hasattr(cfgdata, 'for_face_dataset'):
face_cfg = cfgdata.for_face_dataset
# Whether to add the upper part of face to label map.
add_upper_face = getattr(face_cfg, 'add_upper_face', False)
# Whether to add distance transform output to label map.
add_dist_map = getattr(face_cfg, 'add_distance_transform', False)
# Whether to add positional encoding to label map.
add_pos_encode = add_dist_map and getattr(
face_cfg, 'add_positional_encode', False)
else:
add_upper_face = add_dist_map = add_pos_encode = False
# Mapping from keypoint index to facial part.
part_list = [[list(range(0, 17)) + (
(list(range(68, 83)) + [0]) if add_upper_face else [])], # ai_emoji
[range(17, 22)], # right eyebrow
[range(22, 27)], # left eyebrow
[[28, 31], range(31, 36), [35, 28]], # nose
[[36, 37, 38, 39], [39, 40, 41, 36]], # right eye
[[42, 43, 44, 45], [45, 46, 47, 42]], # left eye
[range(48, 55), [54, 55, 56, 57, 58, 59, 48],
range(60, 65), [64, 65, 66, 67, 60]], # mouth and tongue
]
if add_upper_face:
pts = keypoints[:, :17, :].astype(np.int32)
baseline_y = (pts[:, 0:1, 1] + pts[:, -1:, 1]) / 2
upper_pts = pts[:, 1:-1, :].copy()
upper_pts[:, :, 1] = baseline_y + (
baseline_y - upper_pts[:, :, 1]) * 2 // 3
keypoints = np.hstack((keypoints, upper_pts[:, ::-1, :]))
edge_len = 3 # Interpolate 3 keypoints to form a curve when drawing edges.
bw = max(1, resize_h // 256) # Width of the stroke.
outputs = []
for t_idx in range(keypoints.shape[0]):
# Edge map for the face region from keypoints.
im_edges = np.zeros((resize_h, resize_w, 1), np.uint8)
im_dists = np.zeros((resize_h, resize_w, 0), np.uint8)
for edge_list in part_list:
for e, edge in enumerate(edge_list):
# Edge map for the current edge.
im_edge = np.zeros((resize_h, resize_w, 1), np.uint8)
# Divide a long edge into multiple small edges when drawing.
for i in range(0, max(1, len(edge) - 1), edge_len - 1):
sub_edge = edge[i:i + edge_len]
x = keypoints[t_idx, sub_edge, 0]
y = keypoints[t_idx, sub_edge, 1]
# Interp keypoints to get the curve shape.
curve_x, curve_y = interp_points(x, y)
draw_edge(im_edges, curve_x, curve_y, bw=bw)
if add_dist_map:
draw_edge(im_edge, curve_x, curve_y, bw=bw)
if add_dist_map:
# Add distance transform map on each facial part.
im_dist = cv2.distanceTransform(255 - im_edge,
cv2.DIST_L1, 3)
im_dist = np.clip((im_dist / 3), 0, 255)
im_dists = np.dstack((im_dists, im_dist))
if add_pos_encode and e == 0:
# Add positional encoding for the first edge.
from math import pi
im_pos = np.zeros((resize_h, resize_w, 0), np.float32)
for l in range(10): # noqa: E741
dist = (im_dist.astype(np.float32) - 127.5) / 127.5
sin = np.sin(pi * (2 ** l) * dist)
cos = np.cos(pi * (2 ** l) * dist)
im_pos = np.dstack((im_pos, sin, cos))
# Combine all components to form the final label map.
if add_dist_map:
im_edges = np.dstack((im_edges, im_dists))
im_edges = im_edges.astype(np.float32) / 255.0
if add_pos_encode:
im_edges = np.dstack((im_edges, im_pos))
outputs.append(im_edges)
return outputs
def normalize_and_connect_face_keypoints(cfg, is_inference, data):
r"""Normalize face keypoints w.r.t. reference face keypoints and connect
keypoints to form 2D images.
Args:
cfg (obj): Data configuration.
is_inference (bool): Is doing inference or not.
data (dict): Input data.
Returns:
(dict): Output data.
"""
assert is_inference
resize_h, resize_w = data['images'][0].shape[-2:]
keypoints = data['label'].numpy()[0]
ref_keypoints = data['few_shot_label'].numpy()[0]
# Get the normalization params and prev data if it's been computed before.
dist_scales = prev_keypoints = None
if 'common_attr' in data and 'prev_data' in data['common_attr']:
dist_scales = data['common_attr']['dist_scales']
prev_keypoints = data['common_attr']['prev_data']
def concat(prev, now, t):
r"""Concat prev and now frames in first dimension, up to t frames."""
if prev is None:
return now
return np.vstack([prev, now])[-t:]
# Normalize face keypoints w.r.t. reference face keypoints.
keypoints, dist_scales = \
normalize_face_keypoints(keypoints[0], ref_keypoints[0], dist_scales,
momentum=getattr(cfg.for_face_dataset,
'normalize_momentum', 0.9))
keypoints = keypoints[np.newaxis, :]
# Temporally smooth the face keypoints by median filtering.
ks = getattr(cfg.for_face_dataset, 'smooth_kernel_size', 5)
concat_keypoints = concat(prev_keypoints, keypoints, ks)
if ks > 1 and concat_keypoints.shape[0] == ks:
keypoints = smooth_face_keypoints(concat_keypoints, ks)
# Store the computed params.
if 'common_attr' not in data:
data['common_attr'] = dict()
data['common_attr']['dist_scales'] = dist_scales
data['common_attr']['prev_data'] = concat_keypoints
# Draw the keypoints to turn them into images.
labels = []
for kpt in [keypoints, ref_keypoints]:
label = connect_face_keypoints(resize_h, resize_w, None, None, None,
None, False, cfg, kpt)
labels += [torch.from_numpy(label[0]).permute(2, 0, 1).unsqueeze(0)]
data['label'], data['few_shot_label'] = labels
return data
def smooth_face_keypoints(concat_keypoints, ks):
r""" Temporally smooth the face keypoints by median filtering.
Args:
concat_keypoints (TxKx2 numpy array): Face keypoints to be filtered.
ks (int): Filter kernel size.
Returns:
(1xKx2 numpy array): Output face keypoints.
"""
# Median filtering.
filtered_keypoints = medfilt(concat_keypoints, kernel_size=[ks, 1, 1])
# Fill in any zero keypoints with the value from previous frame.
if (filtered_keypoints == 0).any():
for t in range(1, filtered_keypoints.shape[0]):
kpt_prev = filtered_keypoints[t - 1]
kpt_cur = filtered_keypoints[t]
kpt_max = np.maximum(kpt_cur, kpt_prev)
kpt_cur[kpt_cur == 0] = kpt_max[kpt_cur == 0]
filtered_keypoints[t] = kpt_cur
keypoints = filtered_keypoints[ks // 2: ks // 2 + 1]
return keypoints
def normalize_face_keypoints(keypoints, ref_keypoints, dist_scales=None,
momentum=0.9):
r"""Normalize face keypoints w.r.t. the reference face keypoints.
Args:
keypoints (Kx2 numpy array): Target facial keypoints to be normalized.
ref_keypoints (Kx2 numpy array): Reference facial keypoints.
dist_scales (list of list of floats): Normalization params.
momentum (float): Temporal momentum for the normalization params.
Returns:
(Kx2 numpy array): Normalized facial keypoints.
"""
if keypoints.shape[0] == 68:
central_keypoints = [8]
part_list = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12],
[5, 11], [6, 10], [7, 9, 8],
[17, 26], [18, 25], [19, 24], [20, 23], [21, 22],
[27], [28], [29], [30], [31, 35], [32, 34], [33],
[36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
[48, 54], [49, 53], [50, 52], [51], [55, 59], [56, 58],
[57],
[60, 64], [61, 63], [62], [65, 67], [66]
]
else:
raise ValueError('Input keypoints type not supported.')
face_cen = np.mean(keypoints[central_keypoints, :], axis=0)
ref_face_cen = np.mean(ref_keypoints[central_keypoints, :], axis=0)
def get_mean_dists(pts, face_cen):
r"""Get mean distances of the points from face center."""
mean_dists_x, mean_dists_y = [], []
pts_cen = np.mean(pts, axis=0)
for p, pt in enumerate(pts):
mean_dists_x.append(np.linalg.norm(pt - pts_cen))
mean_dists_y.append(np.linalg.norm(pts_cen - face_cen))
mean_dist_x = sum(mean_dists_x) / len(mean_dists_x) + 1e-3
mean_dist_y = sum(mean_dists_y) / len(mean_dists_y) + 1e-3
return mean_dist_x, mean_dist_y
dist_scale_x, dist_scale_y = [None] * len(part_list), \
[None] * len(part_list)
if dist_scales is None:
dist_scale_x_prev = dist_scale_y_prev = img_scale = None
else:
dist_scale_x_prev, dist_scale_y_prev, img_scale = dist_scales
if img_scale is None:
img_scale = (keypoints[:, 0].max() - keypoints[:, 0].min()) \
/ (ref_keypoints[:, 0].max() - ref_keypoints[:, 0].min())
for i, pts_idx in enumerate(part_list):
pts = keypoints[pts_idx]
pts = pts[pts[:, 0] != 0]
if pts.shape[0]:
ref_pts = ref_keypoints[pts_idx]
mean_dist_x, mean_dist_y = get_mean_dists(pts, face_cen)
ref_dist_x, ref_dist_y = get_mean_dists(ref_pts, ref_face_cen)
dist_scale_x[i] = ref_dist_x / mean_dist_x * img_scale
dist_scale_y[i] = ref_dist_y / mean_dist_y * img_scale
if dist_scale_x_prev is not None:
dist_scale_x[i] = dist_scale_x_prev[i] * momentum + \
dist_scale_x[i] * (1 - momentum)
dist_scale_y[i] = dist_scale_y_prev[i] * momentum + \
dist_scale_y[i] * (1 - momentum)
pts_cen = np.mean(pts, axis=0)
pts = (pts - pts_cen) * dist_scale_x[i] + \
(pts_cen - face_cen) * dist_scale_y[i] + face_cen
keypoints[pts_idx] = pts
return keypoints, [dist_scale_x, dist_scale_y, img_scale]
def npy_to_tensor(keypoints):
r"""Convert numpy array to pytorch tensor."""
return torch.from_numpy(keypoints).unsqueeze(0)
def get_dlib_landmarks_from_image(
imgs, predictor_path='shape_predictor_68_face_landmarks.dat'):
r"""Get face keypoints from an image.
Args:
imgs (N x 3 x H x W tensor or N x H x W x 3 numpy array): Input images.
predictor_path (str): Path to the predictor model.
"""
import dlib
predictor_path = get_checkpoint(predictor_path,
url='1l9zT-AI1yKlfyAb_wl_RjLBSaiWQr8dr')
if type(imgs) == torch.Tensor:
imgs = ((imgs + 1) / 2 * 255).byte()
imgs = np.transpose(imgs.cpu().numpy(), (0, 2, 3, 1))
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
points = np.zeros([imgs.shape[0], 68, 2], dtype=int)
for i in range(imgs.shape[0]):
img = imgs[i]
dets = detector(img, 1)
if len(dets) > 0:
# Only returns the first face.
shape = predictor(img, dets[0])
for b in range(68):
points[i, b, 0] = shape.part(b).x
points[i, b, 1] = shape.part(b).y
return points
def get_126_landmarks_from_image(imgs, landmarks_network):
r"""Get face keypoints from an image.
Args:
imgs (Nx3xHxW tensor or NxHxWx3 numpy array):
Input images.
landmarks_network (obj): The landmark detection network.
Return:
(Nx126x2 numpy array): Predicted landmarks.
"""
if type(imgs) == torch.Tensor:
imgs = ((imgs + 1) / 2 * 255).byte()
imgs = np.transpose(imgs.cpu().numpy(), (0, 2, 3, 1))
landmarks = []
for i in range(imgs.shape[0]):
img = imgs[i]
out_boxes, landmark = \
landmarks_network.get_face_boxes_and_landmarks(img)
if len(landmark) > 1:
# Pick the largest face in the image.
face_size_max = face_index = 0
for i, out_box in enumerate(out_boxes):
face_size = max(out_box[2] - out_box[0],
out_box[1] - out_box[1])
if face_size > face_size_max:
face_size_max = face_size
face_index = i
landmark = landmark[face_index]
elif len(landmark) == 1:
landmark = landmark[0]
else:
landmark = np.zeros((126, 2), dtype=np.float32)
landmarks += [landmark[np.newaxis]]
landmarks = np.vstack(landmarks).astype(np.float32)
return landmarks
def convert_face_landmarks_to_image(cfgdata, landmarks, output_size,
output_tensor=True, cpu_only=False):
r"""Convert the facial landmarks to a label map.
Args:
cfgdata (obj): Data configuration.
landmarks
output_size (tuple of int): H, W of output label map.
output_tensor (bool): Output tensors instead of numpy arrays.
cpu_only (bool): Output CPU tensor only.
Returns:
(NxCxHxW tensor or list of HxWxC numpy arrays): Label maps.
"""
h, w = output_size
labels = connect_face_keypoints(h, w, None, None, None, None, False,
cfgdata, landmarks)
if not output_tensor:
return labels
labels = [torch.from_numpy(label).permute(2, 0, 1).unsqueeze(0)
for label in labels]
labels = torch.cat(labels)
if cpu_only:
return labels
return labels.cuda()
def add_face_keypoints(label_map, image, keypoints):
r"""Add additional keypoints to label map.
Args:
label_map (Nx1xHxW tensor or None)
image (Nx3xHxW tensor)
keypoints (NxKx2 tensor)
"""
if label_map is None:
label_map = torch.zeros_like(image)[:, :1]
x, y = keypoints[:, :, 0], keypoints[:, :, 1]
h, w = image.shape[-2:]
x = ((x + 1) / 2 * w).long()
y = ((y + 1) / 2 * h).long()
bs = torch.arange(label_map.shape[0]).cuda().view(-1, 1).expand_as(x)
label_map[bs, :, y, x] = 1
return label_map
def draw_edge(im, x, y, bw=1, color=(255, 255, 255), draw_end_points=False):
r"""Set colors given a list of x and y coordinates for the edge.
Args:
im (HxWxC numpy array): Canvas to draw.
x (1D numpy array): x coordinates of the edge.
y (1D numpy array): y coordinates of the edge.
bw (int): Width of the stroke.
color (list or tuple of int): Color to draw.
draw_end_points (bool): Whether to draw end points of the edge.
"""
if x is not None and x.size:
h, w = im.shape[0], im.shape[1]
# Draw edge.
for i in range(-bw, bw):
for j in range(-bw, bw):
yy = np.maximum(0, np.minimum(h - 1, y + i))
xx = np.maximum(0, np.minimum(w - 1, x + j))
set_color(im, yy, xx, color)
# Draw endpoints.
if draw_end_points:
for i in range(-bw * 2, bw * 2):
for j in range(-bw * 2, bw * 2):
if (i ** 2) + (j ** 2) < (4 * bw ** 2):
yy = np.maximum(0, np.minimum(h - 1, np.array(
[y[0], y[-1]]) + i))
xx = np.maximum(0, np.minimum(w - 1, np.array(
[x[0], x[-1]]) + j))
set_color(im, yy, xx, color)
def set_color(im, yy, xx, color):
r"""Set pixels of the image to the given color.
Args:
im (HxWxC numpy array): Canvas to draw.
xx (1D numpy array): x coordinates of the pixels.
yy (1D numpy array): y coordinates of the pixels.
color (list or tuple of int): Color to draw.
"""
if type(color) != list and type(color) != tuple:
color = [color] * 3
if len(im.shape) == 3 and im.shape[2] == 3:
if (im[yy, xx] == 0).all():
im[yy, xx, 0], im[yy, xx, 1], im[yy, xx, 2] = \
color[0], color[1], color[2]
else:
for c in range(3):
im[yy, xx, c] = ((im[yy, xx, c].astype(float)
+ color[c]) / 2).astype(np.uint8)
else:
im[yy, xx] = color[0]
def interp_points(x, y):
r"""Given the start and end points, interpolate to get a curve/line.
Args:
x (1D array): x coordinates of the points to interpolate.
y (1D array): y coordinates of the points to interpolate.
Returns:
(dict):
- curve_x (1D array): x coordinates of the interpolated points.
- curve_y (1D array): y coordinates of the interpolated points.
"""
if abs(x[:-1] - x[1:]).max() < abs(y[:-1] - y[1:]).max():
curve_y, curve_x = interp_points(y, x)
if curve_y is None:
return None, None
else:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
if len(x) < 3:
popt, _ = curve_fit(linear, x, y)
else:
popt, _ = curve_fit(func, x, y)
if abs(popt[0]) > 1:
return None, None
except Exception:
return None, None
if x[0] > x[-1]:
x = list(reversed(x))
y = list(reversed(y))
curve_x = np.linspace(x[0], x[-1], int(np.round(x[-1]-x[0])))
if len(x) < 3:
curve_y = linear(curve_x, *popt)
else:
curve_y = func(curve_x, *popt)
return curve_x.astype(int), curve_y.astype(int)
def func(x, a, b, c):
r"""Quadratic fitting function."""
return a * x**2 + b * x + c
def linear(x, a, b):
r"""Linear fitting function."""
return a * x + b
|