File size: 4,123 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import os

import requests
import torch.distributed as dist
import torchvision.utils

from imaginaire.utils.distributed import is_master


def save_pilimage_in_jpeg(fullname, output_img):
    r"""Save PIL Image to JPEG.

    Args:
        fullname (str): Full save path.
        output_img (PIL Image): Image to be saved.
    """
    dirname = os.path.dirname(fullname)
    os.makedirs(dirname, exist_ok=True)
    output_img.save(fullname, 'JPEG', quality=99)


def save_intermediate_training_results(
        visualization_images, logdir, current_epoch, current_iteration):
    r"""Save intermediate training results for debugging purpose.

    Args:
        visualization_images (tensor): Image where pixel values are in [-1, 1].
        logdir (str): Where to save the image.
        current_epoch (int): Current training epoch.
        current_iteration (int): Current training iteration.
    """
    visualization_images = (visualization_images + 1) / 2
    output_filename = os.path.join(
        logdir, 'images',
        'epoch_{:05}iteration{:09}.jpg'.format(
            current_epoch, current_iteration))
    print('Save output images to {}'.format(output_filename))
    os.makedirs(os.path.dirname(output_filename), exist_ok=True)
    image_grid = torchvision.utils.make_grid(
        visualization_images.data, nrow=1, padding=0, normalize=False)
    torchvision.utils.save_image(image_grid, output_filename, nrow=1)


def download_file_from_google_drive(URL, destination):
    r"""Download a file from google drive.

    Args:
        URL: GDrive file ID.
        destination: Path to save the file.

    Returns:

    """
    download_file(f"https://docs.google.com/uc?export=download&id={URL}", destination)


def download_file(URL, destination):
    r"""Download a file from google drive or pbss by using the url.

    Args:
        URL: GDrive URL or PBSS pre-signed URL for the checkpoint.
        destination: Path to save the file.

    Returns:

    """
    session = requests.Session()
    response = session.get(URL, stream=True)
    token = get_confirm_token(response)
    if token:
        params = {'confirm': token}
        response = session.get(URL, params=params, stream=True)
    save_response_content(response, destination)


def get_confirm_token(response):
    r"""Get confirm token

    Args:
        response: Check if the file exists.

    Returns:

    """
    for key, value in response.cookies.items():
        if key.startswith('download_warning'):
            return value
    return None


def save_response_content(response, destination):
    r"""Save response content

    Args:
        response:
        destination: Path to save the file.

    Returns:

    """
    chunk_size = 32768
    with open(destination, "wb") as f:
        for chunk in response.iter_content(chunk_size):
            if chunk:
                f.write(chunk)


def get_checkpoint(checkpoint_path, url=''):
    r"""Get the checkpoint path. If it does not exist yet, download it from
    the url.

    Args:
        checkpoint_path (str): Checkpoint path.
        url (str): URL to download checkpoint.
    Returns:
        (str): Full checkpoint path.
    """
    if 'TORCH_HOME' not in os.environ:
        os.environ['TORCH_HOME'] = os.getcwd()
    save_dir = os.path.join(os.environ['TORCH_HOME'], 'checkpoints')
    os.makedirs(save_dir, exist_ok=True)
    full_checkpoint_path = os.path.join(save_dir, checkpoint_path)
    if not os.path.exists(full_checkpoint_path):
        os.makedirs(os.path.dirname(full_checkpoint_path), exist_ok=True)
        if is_master():
            print('Downloading {}'.format(url))
            if 'pbss.s8k.io' not in url:
                url = f"https://docs.google.com/uc?export=download&id={url}"
            download_file(url, full_checkpoint_path)
    if dist.is_available() and dist.is_initialized():
        dist.barrier()
    return full_checkpoint_path