Spaces:
Runtime error
Runtime error
File size: 19,884 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import warnings
from types import SimpleNamespace
import torch
from torch import nn
from torch.nn import Upsample as NearestUpsample
from imaginaire.layers import Conv2dBlock, LinearBlock, Res2dBlock
from imaginaire.generators.unit import ContentEncoder
class Generator(nn.Module):
r"""Improved MUNIT generator.
Args:
gen_cfg (obj): Generator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
"""
def __init__(self, gen_cfg, data_cfg):
super().__init__()
self.autoencoder_a = AutoEncoder(**vars(gen_cfg))
self.autoencoder_b = AutoEncoder(**vars(gen_cfg))
def forward(self, data, random_style=True, image_recon=True,
latent_recon=True, cycle_recon=True, within_latent_recon=False):
r"""In MUNIT's forward pass, it generates a content code and a style
code from images in both domain. It then performs a within-domain
reconstruction step and a cross-domain translation step.
In within-domain reconstruction, it reconstructs an image using the
content and style from the same image and optionally encodes the image
back to the latent space.
In cross-domain translation, it generates an translated image by mixing
the content and style from images in different domains, and optionally
encodes the image back to the latent space.
Args:
data (dict): Training data at the current iteration.
- images_a (tensor): Images from domain A.
- images_b (tensor): Images from domain B.
random_style (bool): If ``True``, samples the style code from the
prior distribution, otherwise uses the style code encoded from
the input images in the other domain.
image_recon (bool): If ``True``, also returns reconstructed images.
latent_recon (bool): If ``True``, also returns reconstructed latent
code during cross-domain translation.
cycle_recon (bool): If ``True``, also returns cycle
reconstructed images.
within_latent_recon (bool): If ``True``, also returns reconstructed
latent code during within-domain reconstruction.
"""
images_a = data['images_a']
images_b = data['images_b']
net_G_output = dict()
# encode input images into content and style code
content_a, style_a = self.autoencoder_a.encode(images_a)
content_b, style_b = self.autoencoder_b.encode(images_b)
# decode (within domain)
if image_recon:
images_aa = self.autoencoder_a.decode(content_a, style_a)
images_bb = self.autoencoder_b.decode(content_b, style_b)
net_G_output.update(dict(images_aa=images_aa, images_bb=images_bb))
# decode (cross domain)
if random_style: # use randomly sampled style code
style_a_rand = torch.randn_like(style_a)
style_b_rand = torch.randn_like(style_b)
else: # use style code encoded from the other domain
style_a_rand = style_a
style_b_rand = style_b
images_ba = self.autoencoder_a.decode(content_b, style_a_rand)
images_ab = self.autoencoder_b.decode(content_a, style_b_rand)
# encode translated images into content and style code
if latent_recon or cycle_recon:
content_ba, style_ba = self.autoencoder_a.encode(images_ba)
content_ab, style_ab = self.autoencoder_b.encode(images_ab)
net_G_output.update(dict(content_ba=content_ba, style_ba=style_ba,
content_ab=content_ab, style_ab=style_ab))
# encode reconstructed images into content and style code
if image_recon and within_latent_recon:
content_aa, style_aa = self.autoencoder_a.encode(images_aa)
content_bb, style_bb = self.autoencoder_b.encode(images_bb)
net_G_output.update(dict(content_aa=content_aa, style_aa=style_aa,
content_bb=content_bb, style_bb=style_bb))
# cycle reconstruction
if cycle_recon:
images_aba = self.autoencoder_a.decode(content_ab, style_a)
images_bab = self.autoencoder_b.decode(content_ba, style_b)
net_G_output.update(
dict(images_aba=images_aba, images_bab=images_bab))
# required outputs
net_G_output.update(dict(content_a=content_a, content_b=content_b,
style_a=style_a, style_b=style_b,
style_a_rand=style_a_rand,
style_b_rand=style_b_rand,
images_ba=images_ba, images_ab=images_ab))
return net_G_output
def inference(self, data, a2b=True, random_style=True):
r"""MUNIT inference.
Args:
data (dict): Training data at the current iteration.
- images_a (tensor): Images from domain A.
- images_b (tensor): Images from domain B.
a2b (bool): If ``True``, translates images from domain A to B,
otherwise from B to A.
random_style (bool): If ``True``, samples the style code from the
prior distribution, otherwise uses the style code encoded from
the input images in the other domain.
"""
if a2b:
input_key = 'images_a'
content_encode = self.autoencoder_a.content_encoder
style_encode = self.autoencoder_b.style_encoder
decode = self.autoencoder_b.decode
else:
input_key = 'images_b'
content_encode = self.autoencoder_b.content_encoder
style_encode = self.autoencoder_a.style_encoder
decode = self.autoencoder_a.decode
content_images = data[input_key]
content = content_encode(content_images)
if random_style:
style_channels = self.autoencoder_a.style_channels
style = torch.randn(content.size(0), style_channels, 1, 1,
device=torch.device('cuda'))
file_names = data['key'][input_key]['filename']
else:
style_key = 'images_b' if a2b else 'images_a'
assert style_key in data.keys(), \
"{} must be provided when 'random_style' " \
"is set to False".format(style_key)
style_images = data[style_key]
style = style_encode(style_images)
file_names = \
[content_name + '_style_' + style_name
for content_name, style_name in
zip(data['key'][input_key]['filename'],
data['key'][style_key]['filename'])]
output_images = decode(content, style)
return output_images, file_names
class AutoEncoder(nn.Module):
r"""Improved MUNIT autoencoder.
Args:
num_filters (int): Base filter numbers.
max_num_filters (int): Maximum number of filters in the encoder.
num_filters_mlp (int): Base filter number in the MLP module.
latent_dim (int): Dimension of the style code.
num_res_blocks (int): Number of residual blocks at the end of the
content encoder.
num_mlp_blocks (int): Number of layers in the MLP module.
num_downsamples_style (int): Number of times we reduce
resolution by 2x2 for the style image.
num_downsamples_content (int): Number of times we reduce
resolution by 2x2 for the content image.
num_image_channels (int): Number of input image channels.
content_norm_type (str): Type of activation normalization in the
content encoder.
style_norm_type (str): Type of activation normalization in the
style encoder.
decoder_norm_type (str): Type of activation normalization in the
decoder.
weight_norm_type (str): Type of weight normalization.
decoder_norm_params (obj): Parameters of activation normalization in the
decoder. If not ``None``, decoder_norm_params.__dict__ will be used
as keyword arguments when initializing activation normalization.
output_nonlinearity (str): Type of nonlinearity before final output,
``'tanh'`` or ``'none'``.
pre_act (bool): If ``True``, uses pre-activation residual blocks.
apply_noise (bool): If ``True``, injects Gaussian noise in the decoder.
"""
def __init__(self,
num_filters=64,
max_num_filters=256,
num_filters_mlp=256,
latent_dim=8,
num_res_blocks=4,
num_mlp_blocks=2,
num_downsamples_style=4,
num_downsamples_content=2,
num_image_channels=3,
content_norm_type='instance',
style_norm_type='',
decoder_norm_type='instance',
weight_norm_type='',
decoder_norm_params=SimpleNamespace(affine=False),
output_nonlinearity='',
pre_act=False,
apply_noise=False,
**kwargs):
super().__init__()
for key in kwargs:
if key != 'type':
warnings.warn(
"Generator argument '{}' is not used.".format(key))
self.style_encoder = StyleEncoder(num_downsamples_style,
num_image_channels,
num_filters,
latent_dim,
'reflect',
style_norm_type,
weight_norm_type,
'relu')
self.content_encoder = ContentEncoder(num_downsamples_content,
num_res_blocks,
num_image_channels,
num_filters,
max_num_filters,
'reflect',
content_norm_type,
weight_norm_type,
'relu',
pre_act)
self.decoder = Decoder(num_downsamples_content,
num_res_blocks,
self.content_encoder.output_dim,
num_image_channels,
num_filters_mlp,
'reflect',
decoder_norm_type,
decoder_norm_params,
weight_norm_type,
'relu',
output_nonlinearity,
pre_act,
apply_noise)
self.mlp = MLP(latent_dim,
num_filters_mlp,
num_filters_mlp,
num_mlp_blocks,
'none',
'relu')
self.style_channels = latent_dim
def forward(self, images):
r"""Reconstruct an image.
Args:
images (Tensor): Input images.
Returns:
images_recon (Tensor): Reconstructed images.
"""
content, style = self.encode(images)
images_recon = self.decode(content, style)
return images_recon
def encode(self, images):
r"""Encode an image to content and style code.
Args:
images (Tensor): Input images.
Returns:
(tuple):
- content (Tensor): Content code.
- style (Tensor): Style code.
"""
style = self.style_encoder(images)
content = self.content_encoder(images)
return content, style
def decode(self, content, style):
r"""Decode content and style code to an image.
Args:
content (Tensor): Content code.
style (Tensor): Style code.
Returns:
images (Tensor): Output images.
"""
style = self.mlp(style)
images = self.decoder(content, style)
return images
class StyleEncoder(nn.Module):
r"""MUNIT style encoder.
Args:
num_downsamples (int): Number of times we reduce
resolution by 2x2.
num_image_channels (int): Number of input image channels.
num_filters (int): Base filter numbers.
style_channels (int): Dimension of the style code.
padding_mode (string): Type of padding.
activation_norm_type (str): Type of activation normalization.
weight_norm_type (str): Type of weight normalization.
nonlinearity (str): Type of nonlinear activation function.
"""
def __init__(self, num_downsamples, num_image_channels, num_filters,
style_channels, padding_mode, activation_norm_type,
weight_norm_type, nonlinearity):
super().__init__()
conv_params = dict(padding_mode=padding_mode,
activation_norm_type=activation_norm_type,
weight_norm_type=weight_norm_type,
nonlinearity=nonlinearity,
inplace_nonlinearity=True)
model = []
model += [Conv2dBlock(num_image_channels, num_filters, 7, 1, 3,
**conv_params)]
for i in range(2):
model += [Conv2dBlock(num_filters, 2 * num_filters, 4, 2, 1,
**conv_params)]
num_filters *= 2
for i in range(num_downsamples - 2):
model += [Conv2dBlock(num_filters, num_filters, 4, 2, 1,
**conv_params)]
model += [nn.AdaptiveAvgPool2d(1)]
model += [nn.Conv2d(num_filters, style_channels, 1, 1, 0)]
self.model = nn.Sequential(*model)
self.output_dim = num_filters
def forward(self, x):
r"""
Args:
x (tensor): Input image.
"""
return self.model(x)
class Decoder(nn.Module):
r"""Improved MUNIT decoder. The network consists of
- $(num_res_blocks) residual blocks.
- $(num_upsamples) residual blocks or convolutional blocks
- output layer.
Args:
num_upsamples (int): Number of times we increase resolution by 2x2.
num_res_blocks (int): Number of residual blocks.
num_filters (int): Base filter numbers.
num_image_channels (int): Number of input image channels.
style_channels (int): Dimension of the style code.
padding_mode (string): Type of padding.
activation_norm_type (str): Type of activation normalization.
activation_norm_params (obj): Parameters of activation normalization.
If not ``None``, decoder_norm_params.__dict__ will be used
as keyword arguments when initializing activation normalization.
weight_norm_type (str): Type of weight normalization.
nonlinearity (str): Type of nonlinear activation function.
output_nonlinearity (str): Type of nonlinearity before final output,
``'tanh'`` or ``'none'``.
pre_act (bool): If ``True``, uses pre-activation residual blocks.
apply_noise (bool): If ``True``, injects Gaussian noise.
"""
def __init__(self,
num_upsamples,
num_res_blocks,
num_filters,
num_image_channels,
style_channels,
padding_mode,
activation_norm_type,
activation_norm_params,
weight_norm_type,
nonlinearity,
output_nonlinearity,
pre_act=False,
apply_noise=False):
super().__init__()
adain_params = SimpleNamespace(
activation_norm_type=activation_norm_type,
activation_norm_params=activation_norm_params,
cond_dims=style_channels)
conv_params = dict(padding_mode=padding_mode,
nonlinearity=nonlinearity,
inplace_nonlinearity=True,
apply_noise=apply_noise,
weight_norm_type=weight_norm_type,
activation_norm_type='adaptive',
activation_norm_params=adain_params)
# The order of operations in residual blocks.
order = 'pre_act' if pre_act else 'CNACNA'
# Residual blocks with AdaIN.
self.decoder = nn.ModuleList()
for _ in range(num_res_blocks):
self.decoder += [Res2dBlock(num_filters, num_filters,
**conv_params,
order=order)]
# Convolutional blocks with upsampling.
for i in range(num_upsamples):
self.decoder += [NearestUpsample(scale_factor=2)]
self.decoder += [Conv2dBlock(num_filters, num_filters // 2,
5, 1, 2, **conv_params)]
num_filters //= 2
self.decoder += [Conv2dBlock(num_filters, num_image_channels, 7, 1, 3,
nonlinearity=output_nonlinearity,
padding_mode=padding_mode)]
def forward(self, x, style):
r"""
Args:
x (tensor): Content embedding of the content image.
style (tensor): Style embedding of the style image.
"""
for block in self.decoder:
if getattr(block, 'conditional', False):
x = block(x, style)
else:
x = block(x)
return x
class MLP(nn.Module):
r"""The multi-layer perceptron (MLP) that maps Gaussian style code to a
feature vector that is given as the conditional input to AdaIN.
Args:
input_dim (int): Number of channels in the input tensor.
output_dim (int): Number of channels in the output tensor.
latent_dim (int): Number of channels in the latent features.
num_layers (int): Number of layers in the MLP.
norm (str): Type of activation normalization.
nonlinearity (str): Type of nonlinear activation function.
"""
def __init__(self, input_dim, output_dim, latent_dim, num_layers,
norm, nonlinearity):
super().__init__()
model = []
model += [LinearBlock(input_dim, latent_dim,
activation_norm_type=norm,
nonlinearity=nonlinearity)]
for i in range(num_layers - 2):
model += [LinearBlock(latent_dim, latent_dim,
activation_norm_type=norm,
nonlinearity=nonlinearity)]
model += [LinearBlock(latent_dim, output_dim,
activation_norm_type=norm,
nonlinearity=nonlinearity)]
self.model = nn.Sequential(*model)
def forward(self, x):
r"""
Args:
x (tensor): Input image.
"""
return self.model(x.view(x.size(0), -1))
|