Spaces:
Runtime error
Runtime error
File size: 1,439 Bytes
75bbc05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import torch
from diffusers import StableDiffusionXLPipeline
import gradio as gr
# Load model
model_id = "OnomaAIResearch/Illustrious-XL-v1.1"
pipe = StableDiffusionXLPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
).to("cuda")
def generate_image(prompt, negative_prompt="", steps=30, guidance=7.5, seed=None):
generator = torch.Generator(device="cuda").manual_seed(int(seed)) if seed else None
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance,
generator=generator,
).images[0]
return image
with gr.Blocks() as demo:
gr.Markdown("# 🎨 Illustrious-XL Image Generator")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt")
steps = gr.Slider(10, 50, value=30, label="Steps")
guidance = gr.Slider(1.0, 15.0, value=7.5, label="Guidance Scale")
seed = gr.Number(label="Seed", value=None)
generate_btn = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Result", height=512)
generate_btn.click(
generate_image,
inputs=[prompt, negative_prompt, steps, guidance, seed],
outputs=output_image
)
demo.launch() |