File size: 10,897 Bytes
205a7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""Implementation of the pinhole, simple radial, and simple divisional camera models."""

from typing import Tuple

import torch

from siclib.geometry.base_camera import BaseCamera
from siclib.utils.tensor import autocast

# flake8: noqa: E741

# mypy: ignore-errors


class Pinhole(BaseCamera):
    """Implementation of the pinhole camera model."""

    def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
        """Distort normalized 2D coordinates."""
        if return_scale:
            return p2d.new_ones(p2d.shape[:-1] + (1,))

        return p2d, p2d.new_ones((p2d.shape[0], 1)).bool()

    def J_distort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
        """Jacobian of the distortion function."""
        if wrt == "pts":
            return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
        else:
            raise ValueError(f"Unknown wrt: {wrt}")

    def undistort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]:
        """Undistort normalized 2D coordinates."""
        return pts, pts.new_ones((pts.shape[0], 1)).bool()

    def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
        """Jacobian of the undistortion function."""
        if wrt == "pts":
            return torch.eye(2, device=p2d.device, dtype=p2d.dtype).expand(p2d.shape[:-1] + (2, 2))
        else:
            raise ValueError(f"Unknown wrt: {wrt}")


class SimpleRadial(BaseCamera):
    """Implementation of the simple radial camera model."""

    @property
    def dist(self) -> torch.Tensor:
        """Distortion parameters, with shape (..., 1)."""
        return self._data[..., 6:]

    @property
    def k1(self) -> torch.Tensor:
        """Distortion parameters, with shape (...)."""
        return self._data[..., 6]

    @property
    def k1_hat(self) -> torch.Tensor:
        """Distortion parameters, with shape (...)."""
        return self.k1 / (self.f[..., 1] / self.size[..., 1]) ** 2

    def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-0.7, 0.7)):
        """Update the self parameters after changing the k1 distortion parameter."""
        delta_dist = self.new_ones(self.dist.shape) * delta
        dist = (self.dist + delta_dist).clamp(*dist_range)
        data = torch.cat([self.size, self.f, self.c, dist], -1)
        return self.__class__(data)

    @autocast
    def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
        """Check if the distorted points are valid."""
        return p2d.new_ones(p2d.shape[:-1]).bool()

    def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
        """Distort normalized 2D coordinates and check for validity of the distortion model."""
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        radial = 1 + self.k1[..., None, None] * r2

        if return_scale:
            return radial, None

        return p2d * radial, self.check_valid(p2d)

    def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
        """Jacobian of the distortion function."""
        k1 = self.k1[..., None, None]
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        if wrt == "pts":  # (..., 2, 2)
            radial = 1 + k1 * r2
            ppT = torch.einsum("...i,...j->...ij", p2d, p2d)  # (..., 2, 2)
            return (2 * k1 * ppT) + torch.diag_embed(radial.expand(radial.shape[:-1] + (2,)))
        elif wrt == "dist":  # (..., 2)
            return r2 * p2d
        elif wrt == "scale2dist":  # (..., 1)
            return r2
        elif wrt == "scale2pts":  # (..., 2)
            return 2 * k1 * p2d
        else:
            return super().J_distort(p2d, wrt)

    @autocast
    def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
        """Undistort normalized 2D coordinates and check for validity of the distortion model."""
        b1 = -self.k1[..., None, None]
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        radial = 1 + b1 * r2
        return p2d * radial, self.check_valid(p2d)

    @autocast
    def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
        """Jacobian of the undistortion function."""
        b1 = -self.k1[..., None, None]
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        if wrt == "dist":
            return -r2 * p2d
        elif wrt == "pts":
            radial = 1 + b1 * r2
            ppT = torch.einsum("...i,...j->...ij", p2d, p2d)  # (..., 2, 2)
            return (2 * b1[..., None] * ppT) + torch.diag_embed(
                radial.expand(radial.shape[:-1] + (2,))
            )
        else:
            return super().J_undistort(p2d, wrt)

    def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
        """Jacobian of the up-projection offset."""
        if wrt == "uv":  # (..., 2, 2)
            return torch.diag_embed((2 * self.k1[..., None, None]).expand(p2d.shape[:-1] + (2,)))
        elif wrt == "dist":
            return 2 * p2d  # (..., 2)
        else:
            return super().J_up_projection_offset(p2d, wrt)


class SimpleDivisional(BaseCamera):
    """Implementation of the simple divisional camera model."""

    @property
    def dist(self) -> torch.Tensor:
        """Distortion parameters, with shape (..., 1)."""
        return self._data[..., 6:]

    @property
    def k1(self) -> torch.Tensor:
        """Distortion parameters, with shape (...)."""
        return self._data[..., 6]

    def update_dist(self, delta: torch.Tensor, dist_range: Tuple[float, float] = (-3.0, 3.0)):
        """Update the self parameters after changing the k1 distortion parameter."""
        delta_dist = self.new_ones(self.dist.shape) * delta
        dist = (self.dist + delta_dist).clamp(*dist_range)
        data = torch.cat([self.size, self.f, self.c, dist], -1)
        return self.__class__(data)

    @autocast
    def check_valid(self, p2d: torch.Tensor) -> torch.Tensor:
        """Check if the distorted points are valid."""
        return p2d.new_ones(p2d.shape[:-1]).bool()

    def distort(self, p2d: torch.Tensor, return_scale: bool = False) -> Tuple[torch.Tensor]:
        """Distort normalized 2D coordinates and check for validity of the distortion model."""
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        radial = 1 - torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=0))
        denom = 2 * self.k1[..., None, None] * r2

        ones = radial.new_ones(radial.shape)
        radial = torch.where(denom == 0, ones, radial / denom.masked_fill(denom == 0, 1e6))

        if return_scale:
            return radial, None

        return p2d * radial, self.check_valid(p2d)

    def J_distort(self, p2d: torch.Tensor, wrt: str = "pts"):
        """Jacobian of the distortion function."""
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        t0 = torch.sqrt((1 - 4 * self.k1[..., None, None] * r2).clamp(min=1e-6))
        if wrt == "scale2pts":  # (B, N, 2)
            d1 = t0 * 2 * r2
            d2 = self.k1[..., None, None] * r2**2
            denom = d1 * d2
            return p2d * (4 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)

        elif wrt == "scale2dist":
            d1 = 2 * self.k1[..., None, None] * t0
            d2 = 2 * r2 * self.k1[..., None, None] ** 2
            denom = d1 * d2
            return (2 * d2 - (1 - t0) * d1) / denom.masked_fill(denom == 0, 1e6)

        else:
            return super().J_distort(p2d, wrt)

    @autocast
    def undistort(self, p2d: torch.Tensor) -> Tuple[torch.Tensor]:
        """Undistort normalized 2D coordinates and check for validity of the distortion model."""
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        denom = 1 + self.k1[..., None, None] * r2
        radial = 1 / denom.masked_fill(denom == 0, 1e6)
        return p2d * radial, self.check_valid(p2d)

    def J_undistort(self, p2d: torch.Tensor, wrt: str = "pts") -> torch.Tensor:
        """Jacobian of the undistortion function."""
        # return super().J_undistort(p2d, wrt)
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        k1 = self.k1[..., None, None]
        if wrt == "dist":
            denom = (1 + k1 * r2) ** 2
            return -r2 / denom.masked_fill(denom == 0, 1e6) * p2d
        elif wrt == "pts":
            t0 = 1 + k1 * r2
            t0 = t0.masked_fill(t0 == 0, 1e6)
            ppT = torch.einsum("...i,...j->...ij", p2d, p2d)  # (..., 2, 2)
            J = torch.diag_embed((1 / t0).expand(p2d.shape[:-1] + (2,)))
            return J - 2 * k1[..., None] * ppT / t0[..., None] ** 2  # (..., N, 2, 2)

        else:
            return super().J_undistort(p2d, wrt)

    def J_up_projection_offset(self, p2d: torch.Tensor, wrt: str = "uv") -> torch.Tensor:
        """Jacobian of the up-projection offset.

        func(uv, dist) = 4 / (2 * norm2(uv)^2 * (1-4*k1*norm2(uv)^2)^0.5) * uv
        - (1-(1-4*k1*norm2(uv)^2)^0.5) / (k1 * norm2(uv)^4) * uv
        """
        k1 = self.k1[..., None, None]
        r2 = torch.sum(p2d**2, -1, keepdim=True)
        t0 = (1 - 4 * k1 * r2).clamp(min=1e-6)
        t1 = torch.sqrt(t0)
        if wrt == "dist":
            denom = 4 * t0 ** (3 / 2)
            denom = denom.masked_fill(denom == 0, 1e6)
            J = 16 / denom

            denom = r2 * t1 * k1
            denom = denom.masked_fill(denom == 0, 1e6)
            J = J - 2 / denom

            denom = (r2 * k1) ** 2
            denom = denom.masked_fill(denom == 0, 1e6)
            J = J + (1 - t1) / denom

            return J * p2d
        elif wrt == "uv":
            # ! unstable (gradient checker might fail), rewrite to use single division (by denom)
            ppT = torch.einsum("...i,...j->...ij", p2d, p2d)  # (..., 2, 2)

            denom = 2 * r2 * t1
            denom = denom.masked_fill(denom == 0, 1e6)
            J = torch.diag_embed((4 / denom).expand(p2d.shape[:-1] + (2,)))

            denom = 4 * t1 * r2**2
            denom = denom.masked_fill(denom == 0, 1e6)
            J = J - 16 / denom[..., None] * ppT

            denom = 4 * r2 * t0 ** (3 / 2)
            denom = denom.masked_fill(denom == 0, 1e6)
            J = J + (32 * k1[..., None]) / denom[..., None] * ppT

            denom = r2**2 * t1
            denom = denom.masked_fill(denom == 0, 1e6)
            J = J - 4 / denom[..., None] * ppT

            denom = k1 * r2**3
            denom = denom.masked_fill(denom == 0, 1e6)
            J = J + (4 * (1 - t1) / denom)[..., None] * ppT

            denom = k1 * r2**2
            denom = denom.masked_fill(denom == 0, 1e6)
            J = J - torch.diag_embed(((1 - t1) / denom).expand(p2d.shape[:-1] + (2,)))

            return J
        else:
            return super().J_up_projection_offset(p2d, wrt)


camera_models = {
    "pinhole": Pinhole,
    "simple_radial": SimpleRadial,
    "simple_divisional": SimpleDivisional,
}