File size: 5,630 Bytes
577d9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from torch.utils.data import Dataset
from datasets import load_dataset
from processor import MultiModalProcessor
from load_model import load_hf_model
from transformers import Trainer, TrainingArguments
from dataclasses import dataclass, field
from typing import List

@dataclass
class LoraConfig:
    r: int = 8
    lora_alpha: int = 16
    target_modules: List[str] = field(default_factory=lambda: ["q_proj", "v_proj"])
    lora_dropout: float = 0.05
    bias: str = "none"
    task_type: str = "CAUSAL_LM"

    def __post_init__(self):
        self.inference_mode = False
        self.r = {}
        self.lora_alpha = {}
        self.scaling = {}
        self.lora_dropout = {}
        for key in self.target_modules:
            self.r[key] = self.r
            self.lora_alpha[key] = self.lora_alpha
            self.scaling[key] = self.lora_alpha[key] / self.r[key]
            self.lora_dropout[key] = self.lora_dropout

class LoraLinear(torch.nn.Module):
    def __init__(self, in_features, out_features, config: LoraConfig):
        super().__init__()
        self.linear = torch.nn.Linear(in_features, out_features, bias=False)
        self.lora_A = torch.nn.Parameter(torch.zeros((config.r, in_features)))
        self.lora_B = torch.nn.Parameter(torch.zeros((out_features, config.r)))
        self.scaling = config.scaling
        self.dropout = torch.nn.Dropout(p=config.lora_dropout)

    def forward(self, x):
        result = self.linear(x)
        lora_output = (self.dropout(x) @ self.lora_A.t() @ self.lora_B.t()) * self.scaling
        return result + lora_output

def apply_lora_to_model(model, config: LoraConfig):
    for name, module in model.named_modules():
        if any(target in name for target in config.target_modules):
            if isinstance(module, torch.nn.Linear):
                lora_module = LoraLinear(module.in_features, module.out_features, config)
                lora_module.linear.weight.data = module.weight.data
                if module.bias is not None:
                    lora_module.linear.bias = module.bias
                setattr(model, name, lora_module)
    return model

# Load the dataset
ds = load_dataset('HuggingFaceM4/VQAv2', split="train[:10%]")
cols_remove = ["question_type", "answers", "answer_type", "image_id", "question_id"]
ds = ds.remove_columns(cols_remove)

# Create a small test split
split_ds = ds.train_test_split(test_size=0.05)
train_ds = split_ds["train"]
test_ds = split_ds["test"]

print(train_ds)
print(test_ds)

# Load the model and processor
model_id = "./paligemma-3b-pt-224"
model, tokenizer = load_hf_model(model_id, "cuda")
processor = MultiModalProcessor(tokenizer, model.config.vision_config.num_image_tokens, model.config.vision_config.image_size)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

# Apply LoRA to the model
lora_config = LoraConfig(r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.05)
model = apply_lora_to_model(model, lora_config)

# Define a custom dataset
class PaliGemmaDataset(Dataset):
    def __init__(self, dataset, processor):
        self.dataset = dataset
        self.processor = processor

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        item = self.dataset[idx]
        prompt = "answer " + item["question"]
        image = item["image"].convert("RGB")
        answer = item["multiple_choice_answer"]

        # Process inputs
        inputs = self.processor(text=[prompt], images=[image])
        
        # Process labels
        label_inputs = self.processor(text=[answer], images=[image])
        labels = label_inputs['input_ids'][0]

        # Set the labels to -100 for the input part (we don't want to compute loss on it)
        inputs['labels'] = torch.full_like(inputs['input_ids'][0], -100)
        inputs['labels'][-len(labels):] = torch.tensor(labels)

        return inputs

# Create datasets
train_dataset = PaliGemmaDataset(train_ds, processor)
eval_dataset = PaliGemmaDataset(test_ds, processor)

# Define a custom data collator
def custom_data_collator(features):
    batch = {
        'pixel_values': torch.stack([f['pixel_values'][0] for f in features]),
        'input_ids': torch.stack([f['input_ids'][0] for f in features]),
        'attention_mask': torch.stack([f['attention_mask'][0] for f in features]),
        'labels': torch.stack([f['labels'] for f in features])
    }
    return batch

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    warmup_steps=500,
    weight_decay=0.01,
    logging_dir='./logs',
    logging_steps=10,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    load_best_model_at_end=True,
)

# Initialize the Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    data_collator=custom_data_collator,
)

# Fine-tune the model
trainer.train()

# Save the fine-tuned model
trainer.save_model("lora_paligemma_vqa")

# Function to save LoRA weights separately
def save_lora_weights(model, path):
    lora_state_dict = {}
    for name, module in model.named_modules():
        if isinstance(module, LoraLinear):
            lora_state_dict[f"{name}.lora_A"] = module.lora_A.data
            lora_state_dict[f"{name}.lora_B"] = module.lora_B.data
    torch.save(lora_state_dict, path)

# Save LoRA weights
save_lora_weights(model, "lora_weights.pt")

print("Fine-tuning completed and model saved.")