Spaces:
Running
Running
File size: 1,350 Bytes
9688f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import torch
from diffusers import DiffusionPipeline
import imageio
from io import BytesIO
from PIL import Image
# Title of the app
st.title("Text-to-Video Generator")
# Load the model (only once when the app starts)
@st.cache_resource
def load_model():
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()
pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
pipe.enable_vae_slicing()
return pipe
pipe = load_model()
# Text input for the prompt
prompt = st.text_input("Enter a text prompt for the video")
# If a prompt is entered, generate the video
if prompt:
st.write("Generating video... please wait.")
# Generate video frames
video_frames = pipe(prompt, num_frames=24).frames[0]
# Save video to in-memory buffer
video_buffer = BytesIO()
with imageio.get_writer(video_buffer, fps=10, format="mp4") as writer:
for frame in video_frames:
writer.append_data(frame)
video_buffer.seek(0)
# Display the video
st.video(video_buffer, format="video/mp4")
# Optional: Allow users to download the video
st.download_button(label="Download Video", data=video_buffer, file_name="generated_video.mp4", mime="video/mp4")
|