Spaces:
Sleeping
Sleeping
File size: 14,361 Bytes
5d6df7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import pandas as pd
import os
from google import genai
from google.genai import types
import json
from tqdm import tqdm
from typing import List, Dict
import time
def configure_genai(api_key: str):
"""Configure the Gemini API with the provided key."""
os.environ["GEMINI_API_KEY"] = api_key
def load_predictions(task: str, layer: int) -> pd.DataFrame:
"""Load predictions from CSV file."""
predictions_path = os.path.join("src", "codebert", task, f"layer{layer}", f"predictions_layer_{layer}.csv")
if os.path.exists(predictions_path):
try:
df = pd.read_csv(predictions_path, delimiter='\t')
df['Token'] = df['Token'].astype(str)
df['predicted_cluster'] = df['Top 1'].astype(str)
return df
except Exception as e:
print(f"Error loading predictions: {str(e)}")
return None
return None
def load_clusters(task: str, layer: int) -> Dict:
"""Load cluster data from clusters file."""
clusters_path = os.path.join("src", "codebert", task, f"layer{layer}", "clusters-350.txt")
if not os.path.exists(clusters_path):
return None
clusters = {}
try:
with open(clusters_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if not line:
continue
try:
parts = [p.strip() for p in line.split('|||')]
if len(parts) == 5:
token, occurrence, line_num, col_num, cluster_id = parts
cluster_id = cluster_id.split('|')[0].strip()
if not cluster_id.isdigit():
continue
cluster_id = str(int(cluster_id))
if cluster_id not in clusters:
clusters[cluster_id] = []
clusters[cluster_id].append({
'token': token,
'line_num': int(line_num),
'col_num': int(col_num)
})
except Exception:
continue
except Exception as e:
print(f"Error loading clusters: {str(e)}")
return None
return clusters
def load_sentences(task: str, layer: int, file_name: str) -> List[str]:
"""Load sentences from specified file."""
file_path = os.path.join("src", "codebert", task, f"layer{layer}", file_name)
if not os.path.exists(file_path):
file_path = os.path.join("src", "codebert", task, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.readlines()
except Exception as e:
print(f"Error loading sentences from {file_path}: {str(e)}")
return []
def get_gemini_explanation(sentence: str, highlighted_token: str, cluster_words: List[str]) -> str:
"""Get explanation from Gemini about the relationship between the token and cluster words."""
highlighted_sentence = sentence.replace(highlighted_token, f"[[{highlighted_token}]]")
prompt = f"""Do you find any common semantic, structural, lexical and topical relation between the word highlighted in the sentence (enclosed in [[ ]]) and the following list of words? Give a more specific and concise summary about the most prominent relation among these words.
Sentence: {highlighted_sentence}
List of words: {', '.join(cluster_words)}
Answer concisely and to the point."""
# Create the client
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY")) # Ensure this is correct
model = "gemini-2.0-flash"
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=prompt), # Ensure this is the correct usage
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1.0,
response_mime_type="text/plain",
)
explanation = ""
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
explanation += chunk.text
return explanation.strip()
def is_cls_token(token: str) -> bool:
"""Check if a token is a CLS token."""
return token.startswith('[CLS]')
def get_gemini_explanation_for_cls(sentence: str, cluster_words: List[str], context_sentences: List[str]) -> str:
"""Get explanation from Gemini about the CLS token and its relationship with the cluster."""
# Include context sentences in the prompt
context_text = "\n".join(context_sentences) if context_sentences else "No context sentences available."
prompt = f"""[CLS] tokens represent the entire sentence. For this sentence, explain the semantic, structural, lexical, or topical meaning in relation to the list of words from similar contexts. What cohesive meaning does this sentence share with the contextual themes?
Original Sentence: {sentence}
List of cluster words: {', '.join(cluster_words)}
Context Sentences of the list of cluster words:
{context_text}
Answer concisely and to the point about the semantic or topical meaning this sentence shares with the contexts."""
# Create the client
client = genai.Client(api_key=os.environ.get("GEMINI_API_KEY"))
model = "gemini-2.0-flash"
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=prompt),
],
),
]
generate_content_config = types.GenerateContentConfig(
temperature=1.0,
response_mime_type="text/plain",
)
explanation = ""
for chunk in client.models.generate_content_stream(
model=model,
contents=contents,
config=generate_content_config,
):
explanation += chunk.text
return explanation.strip()
def get_gemini_explanation_with_retry(sentence: str, highlighted_token: str, cluster_words: List[str], max_retries: int = 3) -> str:
"""Get explanation from Gemini with retry logic."""
retry_count = 0
while retry_count < max_retries:
try:
return get_gemini_explanation(sentence, highlighted_token, cluster_words)
except Exception as e:
retry_count += 1
error_type = type(e).__name__
print(f"\nEncountered {error_type}: {str(e)}")
if retry_count < max_retries:
wait_time = 60 # Wait for 60 seconds before retrying
print(f"Waiting {wait_time} seconds before retry {retry_count}/{max_retries}...")
time.sleep(wait_time)
else:
print(f"Max retries ({max_retries}) reached. Returning error message.")
return f"Error generating explanation after {max_retries} attempts: {str(e)}"
def get_gemini_explanation_for_cls_with_retry(sentence: str, cluster_words: List[str], context_sentences: List[str], max_retries: int = 3) -> str:
"""Get explanation for CLS tokens with retry logic."""
retry_count = 0
while retry_count < max_retries:
try:
return get_gemini_explanation_for_cls(sentence, cluster_words, context_sentences)
except Exception as e:
retry_count += 1
error_type = type(e).__name__
print(f"\nEncountered {error_type}: {str(e)}")
if retry_count < max_retries:
wait_time = 60 # Wait for 60 seconds before retrying
print(f"Waiting {wait_time} seconds before retry {retry_count}/{max_retries}...")
time.sleep(wait_time)
else:
print(f"Max retries ({max_retries}) reached. Returning error message.")
return f"Error generating explanation after {max_retries} attempts: {str(e)}"
def process_tokens(task: str, layer: int, api_key: str):
"""Process the first 15 tokens for a given task and layer with API rate limiting and error handling."""
# Configure Gemini
configure_genai(api_key)
# Load necessary data
predictions_df = load_predictions(task, layer)
clusters = load_clusters(task, layer)
dev_sentences = load_sentences(task, layer, "dev.in")
input_sentences = load_sentences(task, layer, "input.in")
if predictions_df is None or clusters is None:
print("Failed to load required data")
return
# Limit to first 15 tokens
predictions_df = predictions_df.head(15)
print(f"Limited processing to first {len(predictions_df)} tokens")
results = []
batch_size = 15 # API limit of 15 calls per minute
call_count = 0
start_time = time.time()
# Create output directory if it doesn't exist
output_dir = os.path.join("src", "codebert", task, f"layer{layer}")
os.makedirs(output_dir, exist_ok=True)
# Check if there's an interim file to resume from
interim_file = os.path.join(output_dir, f"token_explanations_layer_{layer}_test15.json")
if os.path.exists(interim_file):
try:
with open(interim_file, 'r', encoding='utf-8') as f:
results = json.load(f)
print(f"Resuming from {len(results)} previously processed tokens")
# Skip tokens we've already processed
processed_indices = {(result['line_idx'], result['position_idx']) for result in results}
except Exception as e:
print(f"Error loading interim file: {str(e)}")
processed_indices = set()
else:
processed_indices = set()
# Process limited number of tokens, showing progress with tqdm
for idx, row in tqdm(predictions_df.iterrows(), total=len(predictions_df), desc="Processing tokens"):
token = row['Token']
line_idx = row['line_idx']
position_idx = row['position_idx']
predicted_cluster = row['predicted_cluster']
# Skip if we've already processed this token
if (line_idx, position_idx) in processed_indices:
continue
# Get original sentence
if line_idx < len(dev_sentences):
original_sentence = dev_sentences[line_idx].strip()
else:
continue
# Get unique cluster words
if predicted_cluster in clusters:
cluster_words = list(set(token_info['token'] for token_info in clusters[predicted_cluster]))
# Gather context sentences from the predicted cluster
context_sentences = []
for token_info in clusters[predicted_cluster]:
context_line_num = token_info['line_num']
if context_line_num < len(input_sentences):
context_sentences.append(input_sentences[context_line_num].strip())
else:
continue
# Rate limiting: check if we've reached the batch limit
call_count += 1
if call_count >= batch_size:
elapsed = time.time() - start_time
# If we've made batch_size calls in less than 60 seconds, wait until the minute is up
if elapsed < 60:
wait_time = 60 - elapsed
print(f"\nReached API limit of {batch_size} calls. Waiting for {wait_time:.2f} seconds...")
time.sleep(wait_time)
# Reset counters
call_count = 0
start_time = time.time()
# Choose the right explanation function based on token type
try:
if is_cls_token(token):
# Special handling for CLS tokens with retry
explanation = get_gemini_explanation_for_cls_with_retry(original_sentence, cluster_words, context_sentences)
else:
# Standard handling for other tokens with retry
explanation = get_gemini_explanation_with_retry(original_sentence, token, cluster_words)
# Store results
result = {
'token': token,
'is_cls_token': is_cls_token(token),
'line_idx': int(line_idx),
'position_idx': int(position_idx),
'predicted_cluster': predicted_cluster,
'original_sentence': original_sentence,
'cluster_words': cluster_words,
'context_sentences': context_sentences,
'explanation': explanation
}
results.append(result)
# Add to processed indices
processed_indices.add((line_idx, position_idx))
# Save after each token for this small test run
with open(interim_file, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"\nSaved results to: {interim_file}")
except Exception as e:
print(f"\nUnexpected error processing token {token}: {str(e)}")
# Save current results before potentially exiting
with open(interim_file, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Emergency save to: {interim_file}")
# Wait a minute before continuing
print("Waiting 60 seconds before continuing...")
time.sleep(60)
# Reset batch counters
call_count = 0
start_time = time.time()
# Save final results with a different name to indicate it's the test run
output_file = os.path.join(output_dir, f"token_explanations_layer_{layer}_first15.json")
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(results, f, indent=2, ensure_ascii=False)
print(f"Results saved to: {output_file}")
def main():
# Configuration
API_KEY = "AIzaSyCUCwrqcDNTSaHsn5Ln_91A0L03W864iYU" # Replace with your API key
TASK = "language_classification" # Replace with your task name
LAYER = 11 # Replace with your layer number
process_tokens(TASK, LAYER, API_KEY)
if __name__ == "__main__":
main() |