Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 23,303 Bytes
2864204 58b9de9 150bb15 58b9de9 d7b7dc6 58b9de9 d7b7dc6 150bb15 2c24f05 e071b26 150bb15 5c4aa1e 2aa9a75 7ef82ad d7b7dc6 58b9de9 2864204 58b9de9 7ef82ad 150bb15 58b9de9 2864204 58b9de9 2864204 d7b7dc6 58b9de9 2864204 58b9de9 e071b26 58b9de9 150bb15 2864204 d7b7dc6 e071b26 d7b7dc6 2864204 150bb15 dcf13df d7b7dc6 150bb15 58b9de9 2864204 150bb15 dcf13df 150bb15 dcf13df 150bb15 2864204 150bb15 5c4aa1e 150bb15 5c4aa1e 150bb15 5c4aa1e 2aa9a75 150bb15 2864204 d7b7dc6 150bb15 2aa9a75 7ef82ad dcf13df 7ef82ad dcf13df 2aa9a75 dcf13df 7ef82ad 2aa9a75 5c4aa1e 2aa9a75 150bb15 e071b26 150bb15 2aa9a75 150bb15 5c4aa1e 150bb15 7ef82ad 150bb15 7ef82ad 150bb15 7ef82ad 150bb15 5c4aa1e 150bb15 5c4aa1e 150bb15 2aa9a75 5c4aa1e 2aa9a75 5c4aa1e 2aa9a75 dcf13df 5c4aa1e dcf13df 5c4aa1e dcf13df 5c4aa1e dcf13df 5c4aa1e dcf13df 5c4aa1e 7ef82ad 150bb15 dcf13df e071b26 150bb15 e071b26 150bb15 dcf13df 7ef82ad dcf13df 7ef82ad 5c4aa1e dcf13df 7ef82ad 5c4aa1e dcf13df 5c4aa1e 7ef82ad e071b26 150bb15 7ef82ad 150bb15 5c4aa1e 7ef82ad 5c4aa1e e071b26 5c4aa1e 150bb15 2aa9a75 d7b7dc6 58b9de9 2c24f05 d7b7dc6 2c24f05 58b9de9 2c24f05 d7b7dc6 2c24f05 d7b7dc6 58b9de9 2c24f05 d7b7dc6 2c24f05 d7b7dc6 58b9de9 d7b7dc6 58b9de9 e071b26 58b9de9 e071b26 d7b7dc6 404587d d7b7dc6 e071b26 d7b7dc6 58b9de9 2c24f05 58b9de9 d7b7dc6 58b9de9 d7b7dc6 58b9de9 2c24f05 150bb15 156ef43 2c24f05 5c4aa1e 2c24f05 7ef82ad e071b26 2c24f05 150bb15 2c24f05 150bb15 2c24f05 58b9de9 404587d 58b9de9 404587d 58b9de9 404587d 58b9de9 d7b7dc6 58b9de9 d7b7dc6 404587d 58b9de9 d7b7dc6 58b9de9 404587d d7b7dc6 404587d d7b7dc6 404587d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
import os
import time
from datetime import datetime
import logging
from pathlib import Path
import requests
import json
import numpy as np
import pandas as pd
import spacy
from sentence_transformers import CrossEncoder
import litellm
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, AutoModelForTokenClassification
import torch
import cohere
from openai import OpenAI
import anthropic
import replicate
# pip install -U google-generativeai
import google.generativeai as genai
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
import src.backend.util as util
import src.envs as envs
litellm.set_verbose=True
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
# Load spacy model for word tokenization
nlp = spacy.load("en_core_web_sm")
os.environ["HUGGINGFACE_API_KEY"] = envs.TOKEN
class ModelLoadingException(Exception):
"""Exception raised for errors in loading a model.
Attributes:
model_id (str): The model identifier.
revision (str): The model revision.
"""
def __init__(self, model_id, revision, messages="Error initializing model"):
self.model_id = model_id
self.revision = revision
super().__init__(f"{messages} id={model_id} revision={revision}")
class SummaryGenerator:
"""A class to generate summaries using a causal language model.
Attributes:
model (str): huggingface/{model_id}
api_base (str): https://api-inference.huggingface.co/models/{model_id}
summaries_df (DataFrame): DataFrame to store generated summaries.
revision (str): Model revision.
avg_length (float): Average length of summaries.
answer_rate (float): Rate of non-empty summaries.
"""
def __init__(self, model_id, revision, device):
"""
Initializes the SummaryGenerator with a model.
Args:
model_id (str): Identifier for the model.
revision (str): Revision of the model.
"""
self.model_id = model_id
self.model = f"huggingface/{model_id}"
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
self.summaries_df = pd.DataFrame()
self.revision = revision
self.device = device
self.avg_length = None
self.answer_rate = None
self.exceptions = None
self.local_model = None
self.local_pipeline = None
def generate_summaries(self, df, save_path=None):
"""Generate summaries for a given DataFrame of source docs.
Args:
df (DataFrame): DataFrame containing source docs.
Returns:
summaries_df (DataFrame): Generated summaries by the model.
"""
exceptions = []
if (save_path is not None) and os.path.exists(save_path):
self.summaries_df = pd.read_csv(save_path)
print(f'Loaded generated summaries from {save_path}')
else:
source, summary, dataset = [], [], []
print(f"Total: {df.shape[0]}")
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
_source = row['text']
_dataset = row['dataset']
system_prompt = envs.SYSTEM_PROMPT
user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
_summary = None
while not _summary:
try:
_summary = self.generate_summary(system_prompt, user_prompt)
# print(f"Finish index {index}")
break
except Exception as e:
if 'Rate limit reached' in str(e):
wait_time = 300
current_time = datetime.now().strftime('%H:%M:%S')
print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
time.sleep(wait_time)
elif 'is currently loading' in str(e):
wait_time = 200
print(f"Model is loading, wait for {wait_time}")
time.sleep(wait_time)
elif '429' in str(e): # for gemini models
wait_time = 60
print(f"Quota has reached, wait for {wait_time}")
time.sleep(wait_time)
else:
print(f"Error at index {index}: {e}")
_summary = ""
exceptions.append(index)
break
summary.append(_summary)
source.append(_source)
dataset.append(_dataset)
# Sleep to prevent hitting rate limits too frequently
time.sleep(1)
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
columns=["source", "summary", "dataset"])
if save_path is not None:
print(f'Save summaries to {save_path}')
fpath = Path(save_path)
fpath.parent.mkdir(parents=True, exist_ok=True)
self.summaries_df.to_csv(fpath)
self.exceptions = exceptions
self._compute_avg_length()
self._compute_answer_rate()
return self.summaries_df
def generate_summary(self, system_prompt: str, user_prompt: str):
# Using Together AI API
using_together_api = False
together_ai_api_models = ['mixtral', 'dbrx', 'wizardlm', 'llama-3-', 'qwen', 'zero-one-ai'] #, 'mistralai'
using_replicate_api = False
replicate_api_models = ['snowflake', 'llama-3.1-405b']
using_pipeline = False
pipeline_models = ['llama-3.1', 'phi-3-mini','falcon-7b']
for replicate_api_model in replicate_api_models:
if replicate_api_model in self.model_id.lower():
using_replicate_api = True
break
if not using_replicate_api:
for together_ai_api_model in together_ai_api_models:
if together_ai_api_model in self.model_id.lower():
using_together_api = True
break
if not using_replicate_api and not using_together_api:
for pipeline_model in pipeline_models:
if pipeline_model in self.model_id.lower():
using_pipeline = True
break
# if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
if using_together_api:
# print('using together api')
# suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
suffix = "chat/completions"
url = f"https://api.together.xyz/v1/{suffix}"
payload = {
"model": self.model_id,
'max_new_tokens': 250,
"temperature": 0.0,
}
payload['messages'] = [{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}]
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
}
response = requests.post(url, json=payload, headers=headers)
print(response)
try:
result = json.loads(response.text)
# print(result)
result = result["choices"][0]
if 'message' in result:
result = result["message"]["content"].strip()
else:
result = result["text"]
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
result = result_candidates[0]
# print(result)
except:
# print(response)
result = ''
print(result)
return result
# Using OpenAI API
elif 'gpt' in self.model_id.lower():
client = OpenAI()
response = client.chat.completions.create(
model=self.model_id.replace('openai/',''),
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}],
temperature=0.0,
max_tokens=250,
)
# print(response)
result = response.choices[0].message.content
print(result)
return result
# Using Google AI API for Gemini models
elif 'gemini' in self.model_id.lower():
genai.configure(api_key=os.getenv('GOOGLE_AI_API_KEY'))
generation_config = {
"temperature": 0,
"top_p": 0.95, # cannot change
"top_k": 0,
"max_output_tokens": 250,
# "response_mime_type": "application/json",
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
]
model = genai.GenerativeModel(model_name=self.model_id.lower().split('google/')[-1],
generation_config=generation_config,
system_instruction=system_prompt,
safety_settings=safety_settings)
# print(model)
convo = model.start_chat(history=[])
convo.send_message(user_prompt)
# print(convo.last)
result = convo.last.text
print(result)
return result
elif using_replicate_api:
print("using replicate")
if 'snowflake' in self.model_id.lower():
input = {
"prompt": user_prompt,
"temperature": 0,
"max_new_tokens": 250,
"stop_sequences": "<|im_end|>",
"prompt_template": f"<|im_start|>system\n{system_prompt}<|im_end|>\n" + "<|im_start|>user\n{prompt}<|im_end|>\n\n<|im_start|>assistant\n",
}
else:
input = {
"prompt": user_prompt,
"system_prompt": system_prompt,
"temperature": 0,
"max_new_tokens": 250
}
response = replicate.run(
self.model_id,
input=input
)
# print(response)
if isinstance(response, list):
response = ''.join(response)
# print(response)
# print()
print(response)
return response
elif 'claude' in self.model_id.lower(): # using anthropic api
client = anthropic.Anthropic()
message = client.messages.create(
model=self.model_id.split('/')[-1],
max_tokens=250,
temperature=0,
system=system_prompt,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": user_prompt
}
]
}
]
)
result = message.content[0].text
print(result)
return result
elif 'mistral-large' in self.model_id.lower():
api_key = os.environ["MISTRAL_API_KEY"]
client = MistralClient(api_key=api_key)
messages = [
ChatMessage(role="system", content=system_prompt),
ChatMessage(role="user", content=user_prompt)
]
# No streaming
chat_response = client.chat(
model=self.model_id,
messages=messages,
)
result = chat_response.choices[0].message.content
print(result)
return result
# Using HF API or download checkpoints
elif self.local_model is None and self.local_pipeline is None:
# try: # try use HuggingFace API
# print('** using huggingface api')
# response = litellm.completion(
# model=self.model,
# messages=[{"role": "system", "content": system_prompt},
# {"role": "user", "content": user_prompt}],
# temperature=0.0,
# max_tokens=250,
# api_base=self.api_base,
# )
# result = response['choices'][0]['message']['content']
# result = result.split('<|im_end|>')[0]
# print(result)
# return result
# except Exception as e:
# if 'Rate limit reached' in str(e) :
# wait_time = 300
# current_time = datetime.now().strftime('%H:%M:%S')
# print(f"Rate limit hit at {current_time}. Waiting for 5 minutes before retrying...")
# time.sleep(wait_time)
# else:
if using_pipeline:
self.local_pipeline = pipeline(
"text-generation",
model=self.model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
else:
self.tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf" if 'openelm' in self.model_id.lower() else self.model_id, trust_remote_code=True)
print("Tokenizer loaded")
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
print(self.local_model.device)
print("Local model loaded")
# Using local model/pipeline
if self.local_pipeline:
print('Using Transformers pipeline')
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
outputs = self.local_pipeline(
messages,
max_new_tokens=250,
)
result = outputs[0]["generated_text"][-1]['content']
print(result)
return result
elif self.local_model: # cannot call API. using local model / pipeline
print('Using local model')
if 'gemma' in self.model_id.lower() or 'mistral-7b' in self.model_id.lower():
messages=[
# gemma-1.1, mistral-7b does not accept system role
{"role": "user", "content": system_prompt + ' ' + user_prompt}
]
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
elif 'phi-2' in self.model_id.lower():
prompt = system_prompt + '\n' + user_prompt
elif 'intel' in self.model_id.lower():
prompt = f"### System:\n{system_prompt}\n### User:\n{user_prompt}\n### Assistant:\n"
else:
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
# print(prompt)
# print('-'*50)
input_ids = self.tokenizer(prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
if 'glm' in self.model_id.lower():
outputs = outputs[:, input_ids['input_ids'].shape[1]:]
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
if 'gemma-2' in self.model_id.lower():
result = result.split(user_prompt + '\nmodel')[-1].strip()
elif 'intel' in self.model_id.lower():
result = result.split("### Assistant:\n")[-1]
else:
print(prompt)
print('-'*50)
result = result.replace(prompt.strip(), '')
print(result)
return result
def _compute_avg_length(self):
"""
Compute the average length of non-empty summaries using SpaCy.
"""
total_word_count = 0
total_count = 0
for summary in self.summaries_df['summary']:
if util.is_summary_valid(summary):
doc = nlp(summary)
words = [token.text for token in doc if token.is_alpha]
total_word_count += len(words)
total_count += 1
self.avg_length = 0 if total_count == 0 else total_word_count / total_count
def _compute_answer_rate(self):
"""
Compute the rate of non-empty summaries.
"""
valid_count = sum(1 for summary in self.summaries_df['summary']
if util.is_summary_valid(summary))
total_count = len(self.summaries_df)
self.answer_rate = 0 if total_count == 0 else valid_count / total_count
class EvaluationModel:
"""A class to evaluate generated summaries.
Attributes:
model (CrossEncoder): The evaluation model.
scores (list): List of evaluation scores.
accuracy (float): Accuracy of the summaries.
hallucination_rate (float): Rate of hallucination in summaries.
"""
def __init__(self, model_path, device):
"""
Initializes the EvaluationModel with a CrossEncoder model.
Args:
model_path (str): Path to the CrossEncoder model.
"""
self.model = AutoModelForTokenClassification.from_pretrained(model_path)
self.device = device
self.model.to(self.device)
self.scores = []
self.factual_consistency_rate = None
self.hallucination_rate = None
def predict(self, text_pairs):
"""Load LoRA adapters of HHEM and make predictions
All HHEM 2.1 settings, e.g., prompt template, are hardcoded in this function.
Args:
text_pairs: list of tuples, each tuple contains two strings (premise, hypothesis)
checkpoint: model ID on Hugging Face
"""
prompt = "<pad> Determine if the hypothesis is true given the premise?\n\nPremise: {text1}\n\nHypothesis: {text2}"
tokenizer = AutoTokenizer.from_pretrained('t5-base')
inputs = tokenizer(
[prompt.format(text1=pair[0], text2=pair[1]) for pair in text_pairs],
return_tensors='pt', padding='longest').to(self.device)
self.model.eval()
with torch.no_grad():
output = self.model(**inputs)
logits = output.logits
logits = logits[:,0,:] # get the logits on the first token
logits = torch.softmax(logits, dim=-1)
scores = [round(x, 5) for x in logits[:, 1].tolist()] # list of float
return scores
def evaluate_hallucination(self, summaries_df):
"""
Evaluate the hallucination rate in summaries. Updates the 'scores' attribute
of the instance with the computed scores.
Args:
summaries_df (DataFrame): DataFrame containing source docs and summaries.
Returns:
list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
"""
hem_scores = []
sources = []
summaries = []
source_summary_pairs = util.create_pairs(summaries_df)
for doc, summary in source_summary_pairs:
if util.is_summary_valid(summary):
try:
summary = summary.replace('<bos>','').replace('<eos>','').strip()
score = self.predict([(doc, summary)])[0]
# print(score)
# if score < 0.5:
# print(doc)
# print('-'*10)
# print(summary)
# print('='*20)
hem_scores.append(score)
sources.append(doc)
summaries.append(summary)
except Exception as e:
logging.error(f"Error while running HEM: {e}")
raise
self.scores = hem_scores
eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
return hem_scores, eval_results
def compute_factual_consistency_rate(self, threshold=0.5):
"""
Compute the factual consistency rate of the evaluated summaries based on
the previously calculated scores. This method relies on the 'scores'
attribute being populated, typically via the 'evaluate_hallucination' method.
Returns:
float: Factual Consistency Rate. Also updates the 'factual_consistency_rate'
and 'hallucination_rate' attributes of the instance.
Raises:
ValueError: If scores have not been calculated prior to calling this method.
"""
if not self.scores:
error_msg = "Scores not calculated. Call evaluate_hallucination() first."
logging.error(error_msg)
raise ValueError(error_msg)
# Use threshold of 0.5 to compute factual_consistency_rate
num_above_threshold = sum(score >= threshold for score in self.scores)
num_total = len(self.scores)
if not num_total:
raise ValueError("No scores available to compute factual consistency rate.")
self.factual_consistency_rate = (num_above_threshold / num_total) * 100
self.hallucination_rate = 100 - self.factual_consistency_rate
return self.factual_consistency_rate
|