File size: 7,931 Bytes
b5e0c7e
 
a8f65a9
0f3a499
a75f490
a6a85af
 
31be0ff
a6a85af
14aa01b
1163ecc
4f8926e
 
 
818f521
49b0a2d
b5e0c7e
b8089b1
 
 
31be0ff
6723b04
 
3f1dae8
31be0ff
 
 
 
ed18c6a
 
 
a6a85af
 
 
 
 
 
 
 
 
49b0a2d
 
 
 
 
e1452a4
b5e0c7e
 
 
25b67f4
ed18c6a
dce4d82
a6a85af
49b0a2d
 
 
b5e0c7e
 
49b0a2d
b5e0c7e
a6a85af
 
 
b5e0c7e
ed18c6a
b5e0c7e
 
 
 
 
308fc11
49b0a2d
 
b5e0c7e
 
ed18c6a
25b67f4
 
 
dce4d82
b5e0c7e
14aa01b
b5e0c7e
 
 
25b67f4
b5e0c7e
 
 
 
687edd3
b5e0c7e
 
 
 
 
a6a85af
 
 
 
70197d7
a6a85af
 
b5e0c7e
a6a85af
 
 
 
 
b5e0c7e
ed18c6a
 
 
b5e0c7e
 
 
a6a85af
ed18c6a
b5e0c7e
ed18c6a
b5e0c7e
 
ed18c6a
14aa01b
ed18c6a
b5e0c7e
ed18c6a
31be0ff
14aa01b
 
 
 
 
31be0ff
a6a85af
 
49b0a2d
a6a85af
49b0a2d
c2df775
14aa01b
 
 
 
 
 
 
c2df775
ed18c6a
 
 
 
25b67f4
d015953
ed18c6a
 
 
25b67f4
b5e0c7e
 
4f8926e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8f65a9
 
4f8926e
72518a3
4f8926e
 
 
72518a3
4f8926e
 
 
72518a3
4f8926e
 
 
 
 
 
b5e0c7e
4f8926e
 
49b0a2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from PIL import Image
import sys
import os
import uuid

import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback

from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data

import sqlite3
from datasets import load_dataset

from vectara_agentic.agent import AgentStatusType
from agent import initialize_agent, get_agent_config


initial_prompt = "How can I help you today?"

# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
    st.session_state.device_id = str(uuid.uuid4())


if "feedback_key" not in st.session_state:
        st.session_state.feedback_key = 0

def toggle_logs():
    st.session_state.show_logs = not st.session_state.show_logs

def show_example_questions():        
    if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
        selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
        if selected_example:
            st.session_state.ex_prompt = selected_example
            st.session_state.first_turn = False
            return True
    return False

def update_func(status_type: AgentStatusType, msg: str):
    if status_type != AgentStatusType.AGENT_UPDATE:
        output = f"{status_type.value} - {msg}"
        st.session_state.log_messages.append(output)

def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "🦖"}]
        st.session_state.thinking_message = "Agent at work..."
        st.session_state.log_messages = []
        st.session_state.prompt = None
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.show_logs = False
        if 'agent' not in st.session_state:
            st.session_state.agent = initialize_agent(cfg, update_func=update_func)

    if 'cfg' not in st.session_state:
        cfg = get_agent_config()
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        example_messages = [example.strip() for example in cfg.examples.split(",")] if cfg.examples else []
        st.session_state.example_messages = [em for em in example_messages if len(em)>0]
        reset()

    cfg = st.session_state.cfg

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## {cfg['demo_welcome']}")
        st.markdown(f"{cfg['demo_description']}")

        st.markdown("\n\n")
        bc1, _ = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()

        st.divider()
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n\n"
            "It demonstrates the use of Agentic RAG functionality with Vectara"
        )

    if "messages" not in st.session_state.keys():
        reset()

    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.session_state.first_turn = False
            st.rerun()

    # User-provided prompt
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": '🧑‍💻'})
        st.session_state.prompt = prompt  # Save the prompt in session state
        st.session_state.log_messages = []
        st.session_state.show_logs = False
        with st.chat_message("user", avatar='🧑‍💻'):
            print(f"Starting new question: {prompt}\n")
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.prompt:
        with st.chat_message("assistant", avatar='🤖'):
            with st.spinner(st.session_state.thinking_message):
                res = st.session_state.agent.chat(st.session_state.prompt)
                res = escape_dollars_outside_latex(res)
            message = {"role": "assistant", "content": res, "avatar": '🤖'}
            st.session_state.messages.append(message)
            st.markdown(res)

        send_amplitude_data(
            user_query=st.session_state.messages[-2]["content"], 
            bot_response=st.session_state.messages[-1]["content"],
            demo_name=cfg['demo_name']
        )

        st.session_state.ex_prompt = None
        st.session_state.prompt = None
        st.session_state.first_turn = False
        st.rerun()

    # Record user feedback
    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt):
        streamlit_feedback(
            feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
            kwargs = {"user_query": st.session_state.messages[-2]["content"],
                      "bot_response": st.session_state.messages[-1]["content"],
                      "demo_name": cfg["demo_name"]}
        )
        
    log_placeholder = st.empty()
    with log_placeholder.container():
        if st.session_state.show_logs:
            st.button("Hide Logs", on_click=toggle_logs)
            for msg in st.session_state.log_messages:
                st.text(msg)
        else:
            if len(st.session_state.log_messages) > 0:
                st.button("Show Logs", on_click=toggle_logs)

    sys.stdout.flush()

def setup_db():
    db_path = 'ev_database.db'
    conn = sqlite3.connect(db_path)
    cursor = conn.cursor()        

    with st.spinner("Loading data... Please wait..."):
        def tables_populated() -> bool:
            tables = ['ev_population', 'county_registrations', 'ev_registrations']        
            for table in tables:
                cursor.execute(f"SELECT name FROM sqlite_master WHERE type='table' AND name='{table}'")
                result = cursor.fetchone()
                if not result:
                    return False
            return True            

        if tables_populated():
            print("Database tables already populated, skipping setup")
            conn.close()
            return
        else:
            print("Populating database tables")

        # Execute the SQL commands to create tables
        with open('create_tables.sql', 'r') as sql_file:
            sql_script = sql_file.read()
            cursor.executescript(sql_script)

        hf_token = os.getenv('HF_TOKEN')

        # Load data into ev_population table
        df = load_dataset("vectara/ev-dataset", data_files="Electric_Vehicle_Population_Data.csv", token=hf_token)['train'].to_pandas()
        df.to_sql('ev_population', conn, if_exists='replace', index=False)

        # Load data into county_registrations table
        df = load_dataset("vectara/ev-dataset", data_files="Electric_Vehicle_Population_Size_History_By_County.csv", token=hf_token)['train'].to_pandas()
        df.to_sql('county_registrations', conn, if_exists='replace', index=False)

        # Load data into ev_registrations table
        df = load_dataset("vectara/ev-dataset", data_files="Electric_Vehicle_Title_and_Registration_Activity.csv", token=hf_token)['train'].to_pandas()
        df.to_sql('ev_registrations', conn, if_exists='replace', index=False)

        # Commit changes and close connection
        conn.commit()
        conn.close()

if __name__ == "__main__":
    st.set_page_config(page_title="Electric Vehicles Assistant", layout="wide")
    setup_db()
    launch_bot()