File size: 5,545 Bytes
a31f912 517884f 76d2d1f 517884f a31f912 517884f a65577b 0fb6958 517884f 45467a5 517884f e516d53 a31f912 517884f 45467a5 eb622d3 e516d53 517884f 76d2d1f 517884f 76d2d1f 106d834 c1070ee 0667bea 106d834 493a0ac d574430 106d834 45467a5 76d2d1f 0f07342 517884f a65577b 3571587 a65577b 3571587 a65577b 3571587 0fb6958 3571587 0fb6958 3571587 a65577b a31f912 3571587 517884f 3571587 493a0ac 106d834 493a0ac 3571587 493a0ac 0f07342 3571587 517884f 76d2d1f 517884f 76d2d1f 517884f a65577b 0fb6958 3571587 0fb6958 3571587 0fb6958 3571587 0fb6958 a65577b e516d53 a31f912 45467a5 a31f912 155091c 517884f 2c6d0ee 45467a5 3020f2c a65577b 2c6d0ee 517884f 45467a5 155091c 3571587 3020f2c 493a0ac 155091c 2c6d0ee 517884f 2c6d0ee 517884f 3571587 517884f 3571587 a31f912 517884f 155091c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import os
import json
import io
import uuid
from gradio_client import Client as client_gradio
from supabase import create_client, Client
from datetime import datetime
# Inicializa Supabase
url: str = os.getenv('SUPABASE_URL')
key: str = os.getenv('SUPABASE_KEY')
supabase: Client = create_client(url, key)
# Obtém token da Hugging Face
hf_token = os.getenv("HF_TOKEN")
# Inicializa o modelo base FLUX.1-dev
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.float16, use_safetensors=True)
# Move o modelo para GPU
pipe.to("cuda")
# Definição dos LoRA e Trigger Words
lora_models = {
"AndroFlux": {
"repo": "vcollos/Nanda",
"weights": "lora.safetensors",
"trigger_word": "" # Sem trigger word específica
},
"vgnCollos": {
"repo": "vcollos/VitorCollos",
"weights": "Vitor.safetensors",
"trigger_word": "A photo of Vitor,"
}
}
# Carrega os LoRAs
for name, details in lora_models.items():
try:
pipe.load_lora_weights(details["repo"], weight_name=details["weights"], adapter_name=name)
print(f"✅ LoRA {name} carregado")
except Exception as e:
print(f"❌ Erro ao carregar o LoRA {name}: {e}")
# Define seed máximo
MAX_SEED = 2**32 - 1
def upload_image_to_supabase(image, filename):
""" Faz upload da imagem para o Supabase Storage e retorna a URL pública. """
img_bytes = io.BytesIO()
image.save(img_bytes, format="PNG")
img_bytes.seek(0) # Move para o início do arquivo
storage_path = f"images/{filename}"
try:
# Upload da imagem
supabase.storage.from_("images").upload(storage_path, img_bytes.getvalue(), {"content-type": "image/png"})
# Retorna a URL pública
base_url = f"{url}/storage/v1/object/public/images"
return f"{base_url}/{filename}"
except Exception as e:
print(f"❌ Erro no upload da imagem: {e}")
return None
@spaces.GPU(duration=80)
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale_1, lora_scale_2, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
# Aplica os dois LoRAs combinados
pipe.set_adapters(["AndroFlux", "vgnCollos"], adapter_weights=[lora_scale_1, lora_scale_2])
# Adiciona trigger words apenas se vgnCollos estiver ativado
if lora_scale_2 > 0:
prompt = f"{lora_models['vgnCollos']['trigger_word']} {prompt}"
# Gera a imagem
image = pipe(
prompt=prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator
).images[0]
# Define um nome único para a imagem
filename = f"image_{seed}_{datetime.utcnow().strftime('%Y%m%d%H%M%S')}.png"
try:
image_url = upload_image_to_supabase(image, filename)
print(f"✅ Imagem salva no Supabase: {image_url}")
except Exception as e:
print(f"❌ Erro ao fazer upload da imagem: {e}")
image_url = None
# Salva os metadados no banco de dados Supabase
try:
supabase.table("images").insert({
"id": str(uuid.uuid4()), # ID único
"prompt": prompt,
"cfg_scale": cfg_scale,
"steps": steps,
"seed": seed,
"lora_scale_1": lora_scale_1,
"lora_scale_2": lora_scale_2,
"image_url": image_url,
"created_at": datetime.utcnow().isoformat()
}).execute()
print("✅ Metadados salvos no Supabase")
except Exception as e:
print(f"❌ Erro ao salvar metadados no Supabase: {e}")
return image, seed
# Interface Gradio
gr_theme = os.getenv("THEME")
with gr.Blocks(theme=gr_theme) as app:
gr.Markdown("# Androflux Image Generator")
with gr.Row():
with gr.Column(scale=2):
prompt = gr.TextArea(label="Prompt", placeholder="Digite um prompt (máx 77 caracteres)", lines=3)
generate_button = gr.Button("Gerar")
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=32)
width = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=768)
height = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=1024)
randomize_seed = gr.Checkbox(False, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=556215326)
# Sliders para os pesos dos LoRAs
lora_scale_1 = gr.Slider(label="LoRA Scale (AndroFlux)", minimum=0, maximum=1, step=0.01, value=0.1)
lora_scale_2 = gr.Slider(label="LoRA Scale (vgnCollos)", minimum=0, maximum=1, step=0.01, value=1)
with gr.Column(scale=2):
result = gr.Image(label="Generated Image")
gr.Markdown("Gere imagens usando Collos LoRA e um prompt de texto.")
# Botão para gerar imagem combinando os LoRAs
generate_button.click(
run_lora,
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale_1, lora_scale_2],
outputs=[result, seed],
)
app.queue()
app.launch(share=True) |