Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,165 Bytes
0edeb99 949ddd4 0edeb99 6ef5d11 0edeb99 414a2f5 0edeb99 949ddd4 414a2f5 949ddd4 0edeb99 414a2f5 062811c 0edeb99 414a2f5 949ddd4 3c07a47 0edeb99 414a2f5 0edeb99 e6c056d 0edeb99 414a2f5 949ddd4 414a2f5 949ddd4 414a2f5 ee78a76 6ef5d11 a6a7e77 6ef5d11 ee78a76 d5af99f ee78a76 6ef5d11 414a2f5 1299d70 414a2f5 6ef5d11 414a2f5 ee78a76 1299d70 ee78a76 414a2f5 9d9dd06 414a2f5 ee78a76 6ef5d11 9d9dd06 6ef5d11 1299d70 414a2f5 1299d70 414a2f5 6ef5d11 414a2f5 1299d70 414a2f5 6ef5d11 1299d70 6ef5d11 a5ddf32 414a2f5 0edeb99 414a2f5 9d9dd06 c179387 9d9dd06 c179387 9d9dd06 77937d3 9d9dd06 414a2f5 1299d70 414a2f5 1299d70 414a2f5 6ef5d11 e6c056d 6ef5d11 1299d70 414a2f5 9d9dd06 414a2f5 6ef5d11 414a2f5 949ddd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import gradio as gr
import spaces
from transformers import AutoImageProcessor, DFineForObjectDetection
from PIL import Image, ImageDraw, ImageFont
import torch
# Load model and processor (keep on CPU initially for Zero GPU)
processor = AutoImageProcessor.from_pretrained("ustc-community/dfine-medium-obj2coco")
model = DFineForObjectDetection.from_pretrained("ustc-community/dfine-medium-obj2coco")
# IMPORTANT: For Zero GPU, keep model on CPU initially
model = model.to("cpu")
# Inference function with Zero GPU decorator
@spaces.GPU(duration=15) # Specify duration for Zero GPU
def detect_objects(image):
# Move model to GPU only during inference
device = torch.device("cuda")
model.to(device)
# Process image
inputs = processor(images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = processor.post_process_object_detection(
outputs,
target_sizes=torch.tensor([image.size[::-1]]),
threshold=0.3
)
# Filter to keep only logos
if len(results) > 0:
# Find the label ID for "logo" in the model's label mapping
logo_label_id = None
for label_id, label_name in model.config.id2label.items():
if label_name.lower() == "logo":
logo_label_id = label_id
break
# Filter results to keep only logos
if logo_label_id is not None and len(results[0]["boxes"]) > 0:
logo_mask = results[0]["labels"] == logo_label_id
results[0]["boxes"] = results[0]["boxes"][logo_mask]
results[0]["labels"] = results[0]["labels"][logo_mask]
results[0]["scores"] = results[0]["scores"][logo_mask]
# Move model back to CPU after inference (important for Zero GPU)
model.to("cpu")
torch.cuda.empty_cache() # Clear GPU cache
# Draw bounding boxes on the original image
image_with_boxes = image.copy()
draw = ImageDraw.Draw(image_with_boxes)
# Try to use a larger font if available
try:
font = ImageFont.truetype("DejaVuSans.ttf", 24)
except:
try:
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSans-Regular.ttf", 24)
except:
font = ImageFont.load_default()
detection_results = []
if len(results) > 0 and len(results[0]["boxes"]) > 0:
object_counter = 1
for box, label, score in zip(results[0]["boxes"], results[0]["labels"], results[0]["scores"]):
# Convert tensors to CPU before processing
box = box.cpu().tolist()
label_id = label.cpu().item()
score_val = score.cpu().item()
# Calculate width and height
width_px = box[2] - box[0]
height_px = box[3] - box[1]
# Convert to mm (divide by 11.91 and round to 2 decimals)
width_mm = round(width_px / 11.91, 2)
height_mm = round(height_px / 11.91, 2)
# Round coordinates
box = [round(x, 2) for x in box]
# Get generic object name
object_name = f"Object {object_counter}"
label_text = object_name
# Draw bounding box
draw.rectangle(box, outline=(45, 136, 58), width=4)
# Draw label only (no score, no size info)
text_bbox = draw.textbbox((box[0], box[1] - 2), label_text, font=font)
draw.rectangle([text_bbox[0]-2, text_bbox[1]-2, text_bbox[2]+2, text_bbox[3]+2], fill=(45, 136, 58))
draw.text((box[0], box[1] - 2), label_text, fill="white", font=font)
# Store detection info with generic name
detection_results.append({
"label": object_name,
"actual_label": model.config.id2label[label_id], # Store actual label internally if needed
"score": score_val,
"box": box,
"width_px": int(width_px),
"height_px": int(height_px),
"width_mm": width_mm,
"height_mm": height_mm
})
object_counter += 1
# Create detection summary
summary = f"Detected {len(detection_results)} object(s)\n\n"
for i, det in enumerate(detection_results[:10], 1): # Show top 10 detections
summary += f"{det['label']}: {det['score']:.2%}\n"
summary += f" Size: {det['width_px']} × {det['height_px']} px | {det['width_mm']} × {det['height_mm']} mm\n\n"
summary += f" Bounding Box: TL({det['box'][0]}, {det['box'][1]}) TR({det['box'][2]}, {det['box'][1]}) BR({det['box'][2]}, {det['box'][3]}) BL({det['box'][0]}, {det['box'][3]})\n\n"
return image_with_boxes, summary
# Create Gradio interface
with gr.Blocks(title="Logo Detection", css="""
.green-button {
background-color: rgb(145, 236, 158) !important;
border-color: rgb(145, 236, 158) !important;
color: #333 !important;
}
.green-button:hover {
background-color: rgb(125, 216, 138) !important;
border-color: rgb(125, 216, 138) !important;
}
/* Override Gradio's orange with green */
.gr-button-primary {
background-color: rgb(145, 236, 158) !important;
border-color: rgb(145, 236, 158) !important;
}
/* Progress bars */
.progress-bar {
background-color: rgb(145, 236, 158) !important;
}
/* Input focus states */
.gr-input:focus, .gr-textarea:focus {
border-color: rgb(145, 236, 158) !important;
outline-color: rgb(145, 236, 158) !important;
}
/* Override orange in various Gradio elements */
.gr-check-radio:checked {
background-color: rgb(145, 236, 158) !important;
border-color: rgb(145, 236, 158) !important;
}
/* Links */
a {
color: rgb(45, 136, 58) !important;
}
/* Loading spinner */
.gr-loading {
color: rgb(145, 236, 158) !important;
}
/* Slider handles and tracks */
.gr-slider input[type="range"]::-webkit-slider-thumb {
background-color: rgb(145, 236, 158) !important;
}
.gr-slider input[type="range"]::-moz-range-thumb {
background-color: rgb(145, 236, 158) !important;
}
/* Any element using Gradio's primary color */
[style*="rgb(249, 115, 22)"] {
color: rgb(145, 236, 158) !important;
}
[style*="background-color: rgb(249, 115, 22)"] {
background-color: rgb(145, 236, 158) !important;
}
""") as demo:
gr.Markdown("""
# Logo Detection with Size Measurements
Upload an image to detect logos.
This Space uses Zero GPU for efficient inference.
**Features:**
- Logo detection only
- Size display in pixels (blue label)
- Size display in millimeters (green label) - converted using 11.91 pixels/mm
- Objects are labeled generically as "Object 1", "Object 2", etc.
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_btn = gr.Button("Detect Objects", variant="primary", elem_classes="green-button")
with gr.Column():
output_image = gr.Image(label="Detection Results")
output_text = gr.Textbox(label="Detection Summary", lines=12)
# Set up event handler
detect_btn.click(
fn=detect_objects,
inputs=input_image,
outputs=[output_image, output_text]
)
# Add examples (comment out if you don't have example images)
# gr.Examples(
# examples=[
# ["example1.jpg"],
# ["example2.jpg"],
# ],
# inputs=input_image,
# outputs=[output_image, output_text],
# fn=detect_objects,
# cache_examples=False # Don't cache for Zero GPU
# )
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |