File size: 11,342 Bytes
dc13b53 d1c20d5 b0a2960 d1c20d5 dc13b53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import streamlit as st
import cv2
import numpy as np
import tempfile
from collections import Counter
import pandas as pd
import pyttsx3
# import streamlit.components.v1 as components
# # embed streamlit docs in a streamlit app
# components.iframe("https://nafisrayan.github.io/ThreeJS-Hand-Control-Panel/", height=500, width=500)
p_time = 0
st.sidebar.title('Settings')
model_type = st.sidebar.selectbox(
'Choose YOLO Model', ('YOLOv8', 'YOLOv9', 'YOLOv10')
)
st.title(f'{model_type} Predictions')
sample_img = cv2.imread('logo2.jpg')
FRAME_WINDOW = st.image(sample_img, channels='BGR')
cap = None
def speak(audio):
engine = pyttsx3.init('sapi5')
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[1].id)
engine.say(audio)
engine.runAndWait()
# Inference Mode
options = st.sidebar.radio(
'Options:', ('Webcam', 'Image', 'Video'), index=1) # removed RTSP for now
# YOLOv8 Model
if model_type == 'YOLOv8':
path_model_file = 'yolov8m.pt'
from ultralytics import YOLO
model = YOLO(path_model_file)
if model_type == 'YOLOv9':
path_model_file = 'yolov9c.pt'
from ultralytics import YOLO
model = YOLO(path_model_file)
if model_type == 'YOLOv10':
st.caption("Work in Progress... >_<")
# path_model_file = 'yolov10n.pt'
# from ultralytics import YOLO
# model = YOLO(path_model_file)
# Load Class names
class_labels = model.names
# Confidence
confidence = st.sidebar.slider(
'Detection Confidence', min_value=0.0, max_value=1.0, value=0.25)
# Draw thickness
draw_thick = st.sidebar.slider(
'Draw Thickness:', min_value=1,
max_value=20, value=3
)
color_pick_list = [None]*len(class_labels)
# Image
if options == 'Image':
upload_img_file = st.sidebar.file_uploader(
'Upload Image', type=['jpg', 'jpeg', 'png'])
if upload_img_file is not None:
pred = st.checkbox(f'Predict Using {model_type}')
file_bytes = np.asarray(
bytearray(upload_img_file.read()), dtype=np.uint8)
img = cv2.imdecode(file_bytes, 1)
FRAME_WINDOW.image(img, channels='BGR')
# st.caption(model(img)[0][0])
if pred:
def predict(model, imag, classes=[], conf=confidence):
if classes:
results = model.predict(imag, classes=classes, conf=confidence)
else:
results = model.predict(imag, conf=conf)
return results
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick):
results = predict(model, img, classes, conf=conf)
# Initialize a Counter to keep track of class occurrences
class_counts = Counter()
for result in results:
for box in result.boxes:
# Update the counter with the class name
class_name = result.names[int(box.cls[0])]
class_counts[class_name] += 1
# Draw the bounding box and label with a random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness)
cv2.putText(img, f"{class_name}",
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness)
# Convert the Counter to a DataFrame for easy viewing
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number'])
df_fq.index.name = 'Class'
return img, df_fq
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence)
FRAME_WINDOW.image(img, channels='BGR')
# Updating Inference results
with st.container():
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True)
st.markdown("<h3>Detected objects in curret Frame</h3>", unsafe_allow_html=True)
st.dataframe(df_fq)
# print("π ~ df_fq:", df_fq)
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()]
print("π ~ list_of_tuples:", list_of_tuples)
speak(f'This is what I have found {list_of_tuples}')
# Video
if options == 'Video':
upload_video_file = st.sidebar.file_uploader(
'Upload Video', type=['mp4', 'avi', 'mkv'])
if upload_video_file is not None:
pred = st.checkbox(f'Predict Using {model_type}')
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(upload_video_file.read())
cap = cv2.VideoCapture(tfile.name)
while True:
success, img = cap.read()
if not success:
st.error(f"Video NOT working\nCheck Video settings!", icon="π¨")
break
if pred:
def predict(model, img, classes=[], conf=confidence):
if classes:
results = model.predict(img, classes=classes, conf=confidence)
else:
results = model.predict(img, conf=conf)
return results
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick):
results = predict(model, img, classes, conf=conf)
# Initialize a Counter to keep track of class occurrences
class_counts = Counter()
for result in results:
for box in result.boxes:
# Update the counter with the class name
class_name = result.names[int(box.cls[0])]
class_counts[class_name] += 1
# Draw the bounding box and label with a random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness)
cv2.putText(img, f"{class_name}",
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness)
# Convert the Counter to a DataFrame for easy viewing
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number'])
df_fq.index.name = 'Class'
return img, df_fq
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence)
FRAME_WINDOW.image(img, channels='BGR')
# Updating Inference results
with st.container():
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True)
st.markdown("<h3>Detected objects in current Frame</h3>", unsafe_allow_html=True)
st.dataframe(df_fq)
# print("π ~ df_fq:", df_fq)
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()]
print("π ~ list_of_tuples:", list_of_tuples)
# speak(f'This is what I have found {list_of_tuples}')
# Webcam
if options == 'Webcam':
cam_options = st.sidebar.selectbox('Select Webcam Channel', ('0', '1', '2', '3'))
if not cam_options == 'Select Channel':
pred = st.checkbox(f'Predict Using {model_type}')
cap = cv2.VideoCapture(int(cam_options))
while True:
success, img = cap.read()
if not success:
st.error(f"Webcam NOT working\nCheck Webcam settings!", icon="π¨")
break
if pred:
def predict(model, img, classes=[], conf=confidence):
if classes:
results = model.predict(img, classes=classes, conf=confidence)
else:
results = model.predict(img, conf=conf)
return results
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick):
results = predict(model, img, classes, conf=conf)
# Initialize a Counter to keep track of class occurrences
class_counts = Counter()
for result in results:
for box in result.boxes:
# Update the counter with the class name
class_name = result.names[int(box.cls[0])]
class_counts[class_name] += 1
# Draw the bounding box and label with a random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness)
cv2.putText(img, f"{class_name}",
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness)
# Convert the Counter to a DataFrame for easy viewing
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number'])
df_fq.index.name = 'Class'
return img, df_fq
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence)
FRAME_WINDOW.image(img, channels='BGR')
# Updating Inference results
with st.container():
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True)
st.markdown("<h3>Detected objects in current Frame</h3>", unsafe_allow_html=True)
st.dataframe(df_fq)
# print("π ~ df_fq:", df_fq)
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()]
print("π ~ list_of_tuples:", list_of_tuples)
# speak(f'This is what I have found {list_of_tuples}')
|