File size: 8,059 Bytes
ec44723 02f296a ec44723 02f296a ec44723 2e51f4a ec44723 2e51f4a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 02f296a ec44723 2e51f4a ec44723 02f296a ec44723 02f296a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import pandas as pd
from tqdm import tqdm
import pinecone
import torch
from sentence_transformers import SentenceTransformer
from transformers import (
pipeline,
AutoTokenizer,
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
)
import streamlit as st
import openai
@st.experimental_singleton
def get_data():
data = pd.read_csv("earnings_calls_sentencewise.csv")
return data
# Initialize models from HuggingFace
@st.experimental_singleton
def get_t5_model():
return pipeline("summarization", model="t5-small", tokenizer="t5-small")
@st.experimental_singleton
def get_flan_t5_model():
return pipeline(
"summarization", model="google/flan-t5-small", tokenizer="google/flan-t5-small"
)
@st.experimental_singleton
def get_mpnet_embedding_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(
"sentence-transformers/all-mpnet-base-v2", device=device
)
model.max_seq_length = 512
return model
@st.experimental_singleton
def get_sgpt_embedding_model():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = SentenceTransformer(
"Muennighoff/SGPT-125M-weightedmean-nli-bitfit", device=device
)
model.max_seq_length = 512
return model
@st.experimental_memo
def save_key(api_key):
return api_key
def query_pinecone(query, top_k, model, index, year, quarter, ticker, threshold=0.5):
# generate embeddings for the query
xq = model.encode([query]).tolist()
# search pinecone index for context passage with the answer
xc = index.query(
xq,
top_k=top_k,
filter={
"Year": int(year),
"Quarter": {"$eq": quarter},
"Ticker": {"$eq": ticker},
},
include_metadata=True,
)
# filter the context passages based on the score threshold
filtered_matches = []
for match in xc["matches"]:
if match["score"] >= threshold:
filtered_matches.append(match)
xc["matches"] = filtered_matches
return xc
def format_query(query_results):
# extract passage_text from Pinecone search result
context = [result["metadata"]["Text"] for result in query_results["matches"]]
return context
def sentence_id_combine(data, query_results, lag=2):
# Extract sentence IDs from query results
ids = [result["metadata"]["Sentence_id"] for result in query_results["matches"]]
# Generate new IDs by adding a lag value to the original IDs
new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
# Remove duplicates and sort the new IDs
new_ids = sorted(set(new_ids))
# Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
lookup_ids = [
new_ids[i : i + (lag * 2 + 1)] for i in range(0, len(new_ids), lag * 2 + 1)
]
# Create a list of context sentences by joining the sentences corresponding to the lookup IDs
context_list = [
". ".join(data.Text.iloc[lookup_id].to_list()) for lookup_id in lookup_ids
]
return context_list
def text_lookup(data, sentence_ids):
context = ". ".join(data.iloc[sentence_ids].to_list())
return context
def gpt3_summary(context_text, query):
prompt = f"""Context information is below. \n"
"---------------------\n {context_text}"
"\n---------------------\n"
"Given the context information and prior knowledge, "
"answer the question: {query}\n" """
response = openai.Completion.create(
model="text-ada-001",
prompt= prompt,
temperature=0.1,
max_tokens=512,
top_p=1.0,
frequency_penalty=0.0,
presence_penalty=1,
)
return response.choices[0].text
def gpt3_qa(query, answer):
response = openai.Completion.create(
model="text-davinci-003",
prompt="Q: " + query + "\nA: " + answer,
temperature=0,
max_tokens=512,
top_p=1,
frequency_penalty=0.0,
presence_penalty=0.0,
stop=["\n"],
)
return response.choices[0].text
st.title("Abstractive Question Answering")
st.write(
"The app uses the quarterly earnings call transcripts for 10 companies (Apple, AMD, Amazon, Cisco, Google, Microsoft, Nvidia, ASML, Intel, Micron) for the years 2016 to 2020."
)
query_text = st.text_input("Input Query", value="Who is the CEO of Apple?")
years_choice = ["2016", "2017", "2018", "2019", "2020"]
year = st.selectbox("Year", years_choice)
quarter = st.selectbox("Quarter", ["Q1", "Q2", "Q3", "Q4"])
ticker_choice = [
"AAPL",
"CSCO",
"MSFT",
"ASML",
"NVDA",
"GOOGL",
"MU",
"INTC",
"AMZN",
"AMD",
]
ticker = st.selectbox("Company", ticker_choice)
num_results = int(st.number_input("Number of Results to query", 1, 5, value=3))
# Choose encoder model
encoder_models_choice = ["SGPT", "MPNET"]
encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
# Choose decoder model
decoder_models_choice = ["FLAN-T5", "T5", "GPT3 (QA_davinci)", "GPT3 (summary_davinci)"]
decoder_model = st.selectbox("Select Decoder Model", decoder_models_choice)
if encoder_model == "MPNET":
# Connect to pinecone environment
pinecone.init(api_key=st.secrets["pinecone_mpnet"], environment="us-east1-gcp")
pinecone_index_name = "week2-all-mpnet-base"
pinecone_index = pinecone.Index(pinecone_index_name)
retriever_model = get_mpnet_embedding_model()
elif encoder_model == "SGPT":
# Connect to pinecone environment
pinecone.init(api_key=st.secrets["pinecone_sgpt"], environment="us-east1-gcp")
pinecone_index_name = "week2-sgpt-125m"
pinecone_index = pinecone.Index(pinecone_index_name)
retriever_model = get_sgpt_embedding_model()
window = int(st.number_input("Sentence Window Size", 0, 3, value=0))
threshold = float(
st.number_input(
label="Similarity Score Threshold", step=0.05, format="%.2f", value=0.55
)
)
data = get_data()
query_results = query_pinecone(
query_text,
num_results,
retriever_model,
pinecone_index,
year,
quarter,
ticker,
threshold,
)
if threshold <= 0.60:
context_list = sentence_id_combine(data, query_results, lag=window)
else:
context_list = format_query(query_results)
st.subheader("Answer:")
if decoder_model == "GPT3 (summary_davinci)":
openai_key = st.text_input(
"Enter OpenAI key",
value=st.secrets["openai_key"],
type="password",
)
api_key = save_key(openai_key)
openai.api_key = api_key
#output_text = []
#for context_text in context_list:
# output_text.append(gpt3_summary(context_text))
#generated_text = ". ".join(output_text)
st.write(gpt3_summary(context_text,query_text))
elif decoder_model == "GPT3 (QA_davinci)":
openai_key = st.text_input(
"Enter OpenAI key",
value=st.secrets["openai_key"],
type="password",
)
api_key = save_key(openai_key)
openai.api_key = api_key
output_text = []
for context_text in context_list:
output_text.append(gpt3_qa(query_text, context_text))
generated_text = ". ".join(output_text)
st.write(gpt3_qa(query_text, generated_text))
elif decoder_model == "T5":
t5_pipeline = get_t5_model()
output_text = []
for context_text in context_list:
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
generated_text = ". ".join(output_text)
st.write(t5_pipeline(generated_text)[0]["summary_text"])
elif decoder_model == "FLAN-T5":
flan_t5_pipeline = get_flan_t5_model()
output_text = []
for context_text in context_list:
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
generated_text = ". ".join(output_text)
st.write(flan_t5_pipeline(generated_text)[0]["summary_text"])
show_retrieved_text = st.checkbox("Show Retrieved Text", value=False)
if show_retrieved_text:
st.subheader("Retrieved Text:")
for context_text in context_list:
st.markdown(f"- {context_text}") |