Spaces:
Runtime error
Runtime error
File size: 21,309 Bytes
db22b14 651f52e de743d1 db22b14 de743d1 db22b14 7cb9d47 db22b14 f96e172 db22b14 94ac583 db22b14 f96e172 db22b14 1f60e19 db22b14 f96e172 db22b14 f96e172 db22b14 1f60e19 db22b14 1f60e19 db22b14 651f52e db22b14 f96e172 db22b14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
#before running this please change the RUNTIME to GPU (Runtime -> Change runtime type -> set harware accelarotor as GPU)
#Mount our google drive
#Note : only needed when you have to download the processed data to the environment
#download and unzip the data from google drive Colab environment
#THis code is to check if the video is corrupted or not..
#If the video is corrupted delete the video.
import glob
import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import face_recognition
#Check if the file is corrupted or not
def validate_video(vid_path,train_transforms):
transform = train_transforms
count = 20
video_path = vid_path
frames = []
a = int(100/count)
first_frame = np.random.randint(0,a)
temp_video = video_path.split('/')[-1]
for i,frame in enumerate(frame_extract(video_path)):
frames.append(transform(frame))
if(len(frames) == count):
break
frames = torch.stack(frames)
frames = frames[:count]
return frames
#extract a from from video
def frame_extract(path):
vidObj = cv2.VideoCapture(path)
success = 1
while success:
success, image = vidObj.read()
if success:
yield image
im_size = 112
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transforms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((im_size,im_size)),
transforms.ToTensor(),
transforms.Normalize(mean,std)])
video_fil = glob.glob('dataset final/*.mp4')
print("Total no of videos :" , len(video_fil))
print(video_fil)
count = 0;
for i in video_fil:
try:
count+=1
validate_video(i,train_transforms)
except:
print("Number of video processed: " , count ," Remaining : " , (len(video_fil) - count))
print("Corrupted video is : " , i)
continue
print((len(video_fil) - count))
#to load preprocessod video to memory
import json
import glob
import numpy as np
import cv2
import copy
import random
video_files = glob.glob('dataset final/*.mp4')
random.shuffle(video_files)
random.shuffle(video_files)
frame_count = []
for video_file in video_files:
cap = cv2.VideoCapture(video_file)
if(int(cap.get(cv2.CAP_PROP_FRAME_COUNT))<100):
video_files.remove(video_file)
continue
frame_count.append(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)))
print("frames are " , frame_count)
print("Total no of video: " , len(frame_count))
print('Average frame per video:',np.mean(frame_count))
# load the video name and labels from csv
import torch
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import face_recognition
class video_dataset(Dataset):
def __init__(self,video_names,labels,sequence_length = 60,transform = None):
self.video_names = video_names
self.labels = labels
self.transform = transform
self.count = sequence_length
def __len__(self):
return len(self.video_names)
def __getitem__(self,idx):
video_path = self.video_names[idx]
frames = []
a = int(100/self.count)
first_frame = np.random.randint(0,a)
temp_video = video_path.split('/')[-1]
#print(temp_video)
label = self.labels.iloc[(labels.loc[labels["filename"] == temp_video].index.values[0]),1]
if(label == 'fake'):
label = 0
if(label == 'real'):
label = 1
for i,frame in enumerate(self.frame_extract(video_path)):
frames.append(self.transform(frame))
if(len(frames) == self.count):
break
frames = torch.stack(frames)
frames = frames[:self.count]
#print("length:" , len(frames), "label",label)
return frames,label
def frame_extract(self,path):
vidObj = cv2.VideoCapture(path)
success = 1
while success:
success, image = vidObj.read()
if success:
yield image
#plot the image
def im_plot(tensor):
image = tensor.cpu().numpy().transpose(1,2,0)
b,g,r = cv2.split(image)
image = cv2.merge((r,g,b))
image = image*[0.22803, 0.22145, 0.216989] + [0.43216, 0.394666, 0.37645]
image = image*255.0
plt.imshow(image.astype(int))
plt.show()
#count the number of fake and real videos
def number_of_real_and_fake_videos(data_list):
header_list = ["filename","label"]
lab = pd.read_csv('labels.csv',names=header_list)
fake = 0
real = 0
for i in data_list:
temp_video = i.split('/')[-1]
label = lab.iloc[(labels.loc[labels["filename"] == temp_video].index.values[0]),1]
if(label == 'fake'):
fake+=1
if(label == 'real'):
real+=1
return real,fake
# load the labels and video in data loader
import random
import pandas as pd
from sklearn.model_selection import train_test_split
header_list = ["filename","label"]
labels = pd.read_csv('labels.csv',names=header_list)
#print(labels)
train_videos = video_files[:int(0.75*len(video_files))]
valid_videos = video_files[int(0.75*len(video_files)):]
valid_label = labels[int(0.75*len(labels)):]
print("train : " , len(train_videos))
print("test : " , len(valid_videos))
# train_videos,valid_videos = train_test_split(data,test_size = 0.2)
# print(train_videos)
print("TRAIN: ", "Real:",number_of_real_and_fake_videos(train_videos)[0]," Fake:",number_of_real_and_fake_videos(train_videos)[1])
print("TEST: ", "Real:",number_of_real_and_fake_videos(valid_videos)[0]," Fake:",number_of_real_and_fake_videos(valid_videos)[1])
im_size = 112
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
train_transforms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((im_size,im_size)),
transforms.ToTensor(),
transforms.Normalize(mean,std)])
test_transforms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((im_size,im_size)),
transforms.ToTensor(),
transforms.Normalize(mean,std)])
train_data = video_dataset(train_videos,labels,sequence_length = 10,transform = train_transforms)
#print(train_data)
val_data = video_dataset(valid_videos,labels,sequence_length = 10,transform = train_transforms)
train_loader = DataLoader(train_data,batch_size = 4,shuffle = True,num_workers = 4)
valid_loader = DataLoader(val_data,batch_size = 4,shuffle = True,num_workers = 4)
image,label = train_data[0]
im_plot(image[0,:,:,:])
lst = [[1,2],[3,4],[4,5]]
val_labels = [val_data[i][1] for i in range(len(val_data))]
val_labels
# for item in range(0,1):
print(train_data[1][1])
val_data[1][1]
valid_label['label']
from torch import nn
import timm
class Model1(nn.Module):
def __init__(self, num_classes, latent_dim=2048, lstm_layers=1, hidden_dim=2048, bidirectional=False):
super(Model1, self).__init__()
model = timm.create_model('xception', pretrained=True)
print(model)
self.model = nn.Sequential(*list(model.children())[:-1])
self.lstm = nn.LSTM(latent_dim, hidden_dim, lstm_layers, bidirectional)
self.relu = nn.LeakyReLU()
self.dp = nn.Dropout(0.4)
self.linear1 = nn.Linear(2048, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
batch_size, seq_length, c, h, w = x.size()
print("Input tensor shape:", x.size())
# Reshape the input tensor to (batch_size * sequence_length, channels, height, width)
x = x.view(batch_size * seq_length, c, h, w)
fmap = self.model(x)
# Reshape the feature map to (batch_size, sequence_length, num_features)
fmap = fmap.view(batch_size, seq_length, -1)
x_lstm, _ = self.lstm(fmap, None)
return fmap, self.dp(self.linear1(torch.mean(x_lstm, dim=1)))
model1 = Model1(2).cuda()
a,b = model1(torch.from_numpy(np.empty((1,20,3,112,112))).type(torch.cuda.FloatTensor))
import torch
from torch.autograd import Variable
import time
import os
import sys
import os
def train_epoch(epoch, num_epochs, data_loader, model, criterion, optimizer):
model.train()
losses = AverageMeter()
accuracies = AverageMeter()
t = []
for i, (inputs, targets) in enumerate(data_loader):
if torch.cuda.is_available():
targets = targets.type(torch.cuda.LongTensor)
inputs = inputs.cuda()
_,outputs = model(inputs)
loss = criterion(outputs,targets.type(torch.cuda.LongTensor))
acc = calculate_accuracy(outputs, targets.type(torch.cuda.LongTensor))
losses.update(loss.item(), inputs.size(0))
accuracies.update(acc, inputs.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d / %d] [Loss: %f, Acc: %.2f%%]"
% (
epoch,
num_epochs,
i,
len(data_loader),
losses.avg,
accuracies.avg))
torch.save(model.state_dict(),'/content/drive/MyDrive/checkpoint1.pt')
return losses.avg,accuracies.avg
def test(epoch,model, data_loader ,criterion):
print('Testing')
model.eval()
losses = AverageMeter()
accuracies = AverageMeter()
pred = []
true = []
count = 0
with torch.no_grad():
for i, (inputs, targets) in enumerate(data_loader):
if torch.cuda.is_available():
targets = targets.cuda().type(torch.cuda.FloatTensor)
inputs = inputs.cuda()
_,outputs = model(inputs)
loss = torch.mean(criterion(outputs, targets.type(torch.cuda.LongTensor)))
acc = calculate_accuracy(outputs,targets.type(torch.cuda.LongTensor))
_,p = torch.max(outputs,1)
true += (targets.type(torch.cuda.LongTensor)).detach().cpu().numpy().reshape(len(targets)).tolist()
pred += p.detach().cpu().numpy().reshape(len(p)).tolist()
losses.update(loss.item(), inputs.size(0))
accuracies.update(acc, inputs.size(0))
sys.stdout.write(
"\r[Batch %d / %d] [Loss: %f, Acc: %.2f%%]"
% (
i,
len(data_loader),
losses.avg,
accuracies.avg
)
)
print('\nAccuracy {}'.format(accuracies.avg))
return true,pred,losses.avg,accuracies.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def calculate_accuracy(outputs, targets):
batch_size = targets.size(0)
_, pred = outputs.topk(1, 1, True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1))
n_correct_elems = correct.float().sum().item()
return 100* n_correct_elems / batch_size
import seaborn as sn
#Output confusion matrix
def print_confusion_matrix(y_true, y_pred):
cm = confusion_matrix(y_true, y_pred)
print('True positive = ', cm[0][0])
print('False positive = ', cm[0][1])
print('False negative = ', cm[1][0])
print('True negative = ', cm[1][1])
print('\n')
df_cm = pd.DataFrame(cm, range(2), range(2))
sn.set(font_scale=1.4) # for label size
sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}) # font size
plt.ylabel('Actual label', size = 20)
plt.xlabel('Predicted label', size = 20)
plt.xticks(np.arange(2), ['Fake', 'Real'], size = 16)
plt.yticks(np.arange(2), ['Fake', 'Real'], size = 16)
plt.ylim([2, 0])
plt.show()
calculated_acc = (cm[0][0]+cm[1][1])/(cm[0][0]+cm[0][1]+cm[1][0]+ cm[1][1])
print("Calculated Accuracy",calculated_acc*100)
def plot_loss(train_loss_avg,test_loss_avg,num_epochs):
loss_train = train_loss_avg
loss_val = test_loss_avg
print(num_epochs)
epochs = range(1,num_epochs+1)
plt.plot(epochs, loss_train, 'g', label='Training loss')
plt.plot(epochs, loss_val, 'b', label='validation loss')
plt.title('Training and Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
def plot_accuracy(train_accuracy,test_accuracy,num_epochs):
loss_train = train_accuracy
loss_val = test_accuracy
epochs = range(1,num_epochs+1)
plt.plot(epochs, loss_train, 'g', label='Training accuracy')
plt.plot(epochs, loss_val, 'b', label='validation accuracy')
plt.title('Training and Validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
from sklearn.metrics import confusion_matrix
#learning rate
lr = 1e-5#0.001
#number of epochs
num_epochs = 40
optimizer = torch.optim.Adam(model1.parameters(), lr= lr,weight_decay = 1e-5)
#class_weights = torch.from_numpy(np.asarray([1,15])).type(torch.FloatTensor).cuda()
#criterion = nn.CrossEntropyLoss(weight = class_weights).cuda()
criterion = nn.CrossEntropyLoss().cuda()
train_loss_avg =[]
train_accuracy = []
test_loss_avg = []
test_accuracy = []
for epoch in range(1,num_epochs+1):
l, acc = train_epoch(epoch,num_epochs,train_loader,model1,criterion,optimizer)
train_loss_avg.append(l)
train_accuracy.append(acc)
true,pred,tl,t_acc = test(epoch,model1,valid_loader,criterion)
test_loss_avg.append(tl)
test_accuracy.append(t_acc)
plot_loss(train_loss_avg,test_loss_avg,len(train_loss_avg))
plot_accuracy(train_accuracy,test_accuracy,len(train_accuracy))
print(confusion_matrix(true,pred))
print_confusion_matrix(true,pred)
from torch import nn
import timm
class Model2(nn.Module):
def __init__(self, num_classes, latent_dim=2048, lstm_layers=1, hidden_dim=2048, bidirectional=False):
super(Model2, self).__init__()
# Create the Inception model
model = timm.create_model('inception_v3', pretrained=True)
# Remove the classification head
model = list(model.children())[:-1]
self.model = nn.Sequential(*model)
self.lstm = nn.LSTM(latent_dim, hidden_dim, lstm_layers, bidirectional)
self.relu = nn.LeakyReLU()
self.dp = nn.Dropout(0.4)
# Linear layer for classification
self.linear1 = nn.Linear(2048, num_classes)
# Adaptive pooling layer
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
batch_size, seq_length, c, h, w = x.size()
print("Input tensor shape:", x.size())
# Reshape the input tensor to (batch_size * sequence_length, channels, height, width)
x = x.view(batch_size * seq_length, c, h, w)
fmap = self.model(x)
# Reshape the feature map to (batch_size, sequence_length, num_features)
fmap = fmap.view(batch_size, seq_length, -1)
x_lstm, _ = self.lstm(fmap, None)
return fmap, self.dp(self.linear1(torch.mean(x_lstm, dim=1)))
model2 = Model2(2).cuda()
a,b = model2(torch.from_numpy(np.empty((1,20,3,112,112))).type(torch.cuda.FloatTensor))
from sklearn.metrics import confusion_matrix
#learning rate
lr = 1e-5#0.001
#number of epochs
num_epochs = 50
optimizer = torch.optim.Adam(model2.parameters(), lr= lr,weight_decay = 1e-5)
#class_weights = torch.from_numpy(np.asarray([1,15])).type(torch.FloatTensor).cuda()
#criterion = nn.CrossEntropyLoss(weight = class_weights).cuda()
criterion = nn.CrossEntropyLoss().cuda()
train_loss_avg =[]
train_accuracy = []
test_loss_avg = []
test_accuracy = []
for epoch in range(1,num_epochs+1):
l, acc = train_epoch(epoch,num_epochs,train_loader,model2,criterion,optimizer)
train_loss_avg.append(l)
train_accuracy.append(acc)
true,pred,tl,t_acc = test(epoch,model2,valid_loader,criterion)
test_loss_avg.append(tl)
test_accuracy.append(t_acc)
plot_loss(train_loss_avg,test_loss_avg,len(train_loss_avg))
plot_accuracy(train_accuracy,test_accuracy,len(train_accuracy))
print(confusion_matrix(true,pred))
print_confusion_matrix(true,pred)
#Model with feature visualization
from torch import nn
from torchvision import models
class Model3(nn.Module):
def __init__(self, num_classes,latent_dim= 2048, lstm_layers=1 , hidden_dim = 2048, bidirectional = False):
super(Model3, self).__init__()
model = models.resnext50_32x4d(pretrained = True)
self.model = nn.Sequential(*list(model.children())[:-2])
self.lstm = nn.LSTM(latent_dim,hidden_dim, lstm_layers, bidirectional)
self.relu = nn.LeakyReLU()
self.dp = nn.Dropout(0.4)
self.linear1 = nn.Linear(2048,num_classes)
self.avgpool = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
batch_size,seq_length, c, h, w = x.shape
x = x.view(batch_size * seq_length, c, h, w)
fmap = self.model(x)
x = self.avgpool(fmap)
x = x.view(batch_size,seq_length,2048)
x_lstm,_ = self.lstm(x,None)
return fmap,self.dp(self.linear1(x_lstm[:,-1,:]))
model3 = Model3(2).cuda()
a,b = model3(torch.from_numpy(np.empty((1,20,3,112,112))).type(torch.cuda.FloatTensor))
from sklearn.metrics import confusion_matrix
#learning rate
lr = 1e-5#0.001
#number of epochs
num_epochs = 50
optimizer = torch.optim.Adam(model3.parameters(), lr= lr,weight_decay = 1e-5)
#class_weights = torch.from_numpy(np.asarray([1,15])).type(torch.FloatTensor).cuda()
#criterion = nn.CrossEntropyLoss(weight = class_weights).cuda()
criterion = nn.CrossEntropyLoss().cuda()
train_loss_avg =[]
train_accuracy = []
test_loss_avg = []
test_accuracy = []
for epoch in range(1,num_epochs+1):
l, acc = train_epoch(epoch,num_epochs,train_loader,model3,criterion,optimizer)
train_loss_avg.append(l)
train_accuracy.append(acc)
true,pred,tl,t_acc = test(epoch,model3,valid_loader,criterion)
test_loss_avg.append(tl)
test_accuracy.append(t_acc)
plot_loss(train_loss_avg,test_loss_avg,len(train_loss_avg))
plot_accuracy(train_accuracy,test_accuracy,len(train_accuracy))
print(confusion_matrix(true,pred))
print_confusion_matrix(true,pred)
models = [model1, model2]
# preds = [model.predict(valid_loader) for model in models]
true1,pred1,tl1,t_acc1 = test(epoch,model1,valid_loader,criterion)
true2,pred2,tl2,t_acc2 = test(epoch,model2,valid_loader,criterion)
true3,pred3,tl3,t_acc3 = test(epoch,model3,valid_loader,criterion)
preds=np.array([pred1,pred2])
# summed = np.sum(preds, axis=0)
# # argmax across classes
# ensemble_prediction = np.argmax(summed, axis=1)
# # combined_pred = (pred1 + pred2) / 2 # Averaging the predictions of the two models
# # Compute combined accuracy
# combined_accuracy = (t_acc1 + t_acc2) / 2
# # print(combined_pred)
# print(combined_accuracy)
# print((pred1))
# w1 = 0.5
# w2 = 1.5
# combined_accuracy = (w1 * t_acc1 + w2 * t_acc2) / (w1 + w2)
# combined_accuracy
# summed = np.sum(preds, axis=0)
# print(summed)
# # argmax across classes
# ensemble_prediction = np.argmax(summed)
# ensemble_prediction
# # print(epoch)
# # print(model1)
# print(np.array(valid_loader))
# print(criterion)
print(val_data)
# import numpy as np
# # Convert pred1 and pred2 to numpy arrays
# pred1_array = np.array(pred1)
# pred2_array = np.array(pred2)
# val_array = np.array(val_labels)
# weighted_pred = (pred2_array + pred1_array) / 2
# # Compute accuracy of the ensemble model
# ensemble_accuracy = np.mean(np.argmax(weighted_pred) == val_array)
# print("Ensemble accuracy:", ensemble_accuracy)
import numpy as np
# Define a grid of weights to search over
weight_range = np.linspace(0, 1, num=11) # Adjust the number of values and range as needed
best_accuracy = 0.0
best_weights = None
# Iterate over all combinations of weights
for w1 in weight_range:
for w2 in weight_range:
for w3 in weight_range:
# Ensure the sum of weights is 1
total_weight = w1 + w2 + w3
if total_weight == 0:
continue
w1 /= total_weight
w2 /= total_weight
w3 /= total_weight
# Combine accuracies using weighted average
weighted_accuracy = (w1 * t_acc1 +
w2 * t_acc2 +
w3 * t_acc3)
# Update best accuracy and weights if current ensemble accuracy is higher
if weighted_accuracy > best_accuracy:
best_accuracy = weighted_accuracy
best_weights = (w1, w2, w3)
print("Best ensemble accuracy:", best_accuracy)
print("Best weights:", best_weights)
# weight_range = np.linspace(0, 1, num=11)
# weight_range
|