File size: 4,318 Bytes
ceca68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80cf518
 
 
 
 
ceca68f
80cf518
 
 
 
 
 
 
ceca68f
80cf518
 
 
 
 
 
 
 
ceca68f
80cf518
 
 
 
 
 
 
ceca68f
80cf518
 
 
ceca68f
55d3c49
 
ceca68f
b64e369
80cf518
b64e369
 
 
 
 
80cf518
b64e369
 
 
 
80cf518
ceca68f
b64e369
 
 
 
 
 
 
 
 
 
 
 
80cf518
 
 
 
 
ceca68f
80cf518
 
 
 
 
 
 
 
 
 
 
 
ceca68f
80cf518
 
 
 
ceca68f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import gradio as gr
import pandas as pd
from functools import partial
from ai_classroom_suite.UIBaseComponents import *

### User Interface Chatbot Functions ###
def get_tutor_reply(chat_tutor):
  chat_tutor.get_tutor_reply()
  return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor

def get_conversation_history(chat_tutor):
    return chat_tutor.conversation_memory, chat_tutor

### User Interfaces ###
with gr.Blocks() as demo:
    #initialize tutor (with state)
    study_tutor = gr.State(SlightlyDelusionalTutor())

    # Student chatbot interface
    gr.Markdown("""
    ## Chat with the Model
    Description here
    """)
    
    """
    API Authentication functionality
    Instead of ask students to provide key, the key is now provided by the instructor. 
    To permanently set the key, go to Settings -> Variables and secrets -> Secrets, 
    then replace OPENAI_API_KEY value with whatever openai key of the instructor.
    """
    api_input = gr.Textbox(show_label=False, type="password", visible=False, value=os.environ.get("OPENAI_API_KEY"))

    # The instructor will provide a secret prompt/persona to the tutor
    instructor_prompt = gr.Textbox(label="Verify your prompt content", value = os.environ.get("SECRET_PROMPT"), visible=False)
    
    # Placeholders components
    text_input_none = gr.Textbox(visible=False)
    file_input_none = gr.File(visible=False)
    instructor_input_none = gr.TextArea(visible=False)
    learning_objectives_none = gr.Textbox(visible=False)

    # Set the secret prompt in this session and embed it to the study tutor
    prompt_submit_btn = gr.Button("Initialize Tutor")
    prompt_submit_btn.click(
        fn=create_reference_store, 
        inputs=[study_tutor, prompt_submit_btn, instructor_prompt, file_input_none, instructor_input_none, api_input, instructor_prompt],
        outputs=[study_tutor, prompt_submit_btn]
    )

    with gr.Row(equal_height=True):
        with gr.Column(scale=2):
            chatbot = gr.Chatbot()
            with gr.Row():
                user_chat_input = gr.Textbox(label="User input", scale=9)
                user_chat_submit = gr.Button("Ask/answer model", scale=1)

    # First add user's message to the conversation history when user presses "enter" or hits the submit button
    # Then get reply from the tutor and add that to the conversation history
    user_chat_input.submit(
        fn = add_user_message, 
        inputs = [user_chat_input, study_tutor], 
        outputs = [user_chat_input, chatbot, study_tutor], 
        queue=False
    ).then(
        fn = get_tutor_reply, 
        inputs = [study_tutor], 
        outputs = [user_chat_input, chatbot, study_tutor], 
        queue=True
    )

    user_chat_submit.click(
        fn = add_user_message, 
        inputs = [user_chat_input, study_tutor], 
        outputs = [user_chat_input, chatbot, study_tutor], 
        queue=False
    ).then(
        fn = get_tutor_reply, 
        inputs = [study_tutor], 
        outputs = [user_chat_input, chatbot, study_tutor], 
        queue=True
    )
    
    # Testing the chat history storage, can be deleted at deployment
    with gr.Blocks():
        test_btn = gr.Button("View your chat history")
        chat_history = gr.JSON(label = "conversation history")
        test_btn.click(get_conversation_history, inputs=[study_tutor], outputs=[chat_history, study_tutor])

    # Download conversation history file
    with gr.Blocks():
        gr.Markdown("""
        ## Export Your Chat History
        Export your chat history as a .json, .txt, or .csv file
        """)
        with gr.Row():
            export_dialogue_button_json = gr.Button("JSON")
            export_dialogue_button_txt = gr.Button("TXT")
            export_dialogue_button_csv = gr.Button("CSV")
    
        file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False)
    
    export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True)
    export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True)
    export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True)
            
demo.queue().launch(server_name='0.0.0.0', server_port=7860)