File size: 1,677 Bytes
2206479 65733ce 2206479 2dc3f1e 65733ce 45dbef5 2dc3f1e fc9603c 9b493b1 2dc3f1e fc9603c 2dc3f1e 9804ae2 2206479 45dbef5 2206479 2dc3f1e 2206479 45dbef5 2206479 7bb8323 65733ce 45dbef5 65733ce c235ab0 5e64ef2 65733ce 7bb8323 65733ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import pandas as pd
import gradio as gr
import gc
import plotly.express as px
def plot_rolling_average_dune(
daa_df: pd.DataFrame,
) -> gr.Plot:
"""Function to plot the rolling average of daily active agents"""
fig = px.bar(
daa_df,
x="tx_date",
y="seven_day_trailing_avg",
)
fig.update_layout(
xaxis_title="Date",
yaxis_title="7-day rolling average of DAA",
)
return gr.Plot(
value=fig,
)
def plot_rolling_average_roi(two_weeks_avg_roi_pearl_agents: pd.DataFrame) -> gr.Plot:
"""Function to plot the 2-weeks rolling average ROI for pearl agents"""
print("Rolling average ROI DataFrame:")
print(two_weeks_avg_roi_pearl_agents.head())
fig2 = px.line(
two_weeks_avg_roi_pearl_agents,
x="creation_date",
y="two_weeks_avg_roi",
color_discrete_sequence=["#9C27B0"],
)
fig2.update_layout(
xaxis_title="Week",
yaxis_title="2-week rolling average ROI of pearl agents",
)
return gr.Plot(
value=fig2,
)
def plot_weekly_average_roi(weekly_avg_roi_df: pd.DataFrame) -> gr.Plot:
"""Function to plot the weekly average of ROI for pearl agents"""
print("Weekly average ROI DataFrame:")
print(weekly_avg_roi_df.head())
# Update the plot to use the correct column name 'weekly_avg_roi'
fig = px.line(
weekly_avg_roi_df,
x="week_start",
y="avg_weekly_roi", # Changed from 'roi' to 'weekly_avg_roi'
)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly average ROI for pearl agents",
)
return gr.Plot(
value=fig,
)
|