File size: 8,299 Bytes
efabdf9
1ed82ec
f95e119
1ab360a
 
 
 
1ed82ec
 
 
 
efabdf9
 
 
 
 
 
 
 
 
f95e119
 
 
 
 
 
 
8a73d91
f95e119
 
 
 
 
8a73d91
1ab360a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
279fac4
 
 
1ab360a
 
 
 
 
 
 
 
 
 
 
 
279fac4
 
 
1ab360a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import pandas as pd
from pathlib import Path
from datetime import datetime, timedelta
import gzip
import shutil
import os
from huggingface_hub import hf_hub_download

SCRIPTS_DIR = Path(__file__).parent
ROOT_DIR = SCRIPTS_DIR.parent
TMP_DIR = ROOT_DIR / "tmp"


def get_traders_family(row: pd.DataFrame) -> str:
    if row.staking == "non_agent":
        return "non_agent"
    elif row.market_creator == "pearl":
        return "pearl_agent"
    # quickstart
    return "quickstart_agent"


def get_current_week():
    current_date = datetime.now()

    # Get the start and end dates of the current week (starting on Sunday)
    current_week_start = current_date - timedelta(days=current_date.weekday() + 1)
    return current_week_start.strftime("%b-%d-%Y")


def get_next_week():
    current_date = datetime.now()
    next_week_start = current_date + timedelta(days=7 - (current_date.weekday() + 1))
    return next_week_start.strftime("%b-%d-%Y")


def load_all_data():

    # all trades profitability
    # Download the compressed file
    gz_filepath_trades = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="all_trades_profitability.parquet.gz",
        repo_type="dataset",
    )

    parquet_filepath_trades = gz_filepath_trades.replace(".gz", "")
    parquet_filepath_trades = parquet_filepath_trades.replace("all", "")

    with gzip.open(gz_filepath_trades, "rb") as f_in:
        with open(parquet_filepath_trades, "wb") as f_out:
            shutil.copyfileobj(f_in, f_out)

    # Now read the decompressed parquet file
    df1 = pd.read_parquet(parquet_filepath_trades)

    # closed_markets_div
    closed_markets_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="closed_markets_div.parquet",
        repo_type="dataset",
    )
    df2 = pd.read_parquet(closed_markets_df)

    # daily_info
    daily_info_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="daily_info.parquet",
        repo_type="dataset",
    )
    df3 = pd.read_parquet(daily_info_df)

    # unknown traders
    unknown_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="unknown_traders.parquet",
        repo_type="dataset",
    )
    df4 = pd.read_parquet(unknown_df)

    # retention activity
    gz_file_path_ret = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="retention_activity.parquet.gz",
        repo_type="dataset",
    )
    parquet_file_path_ret = gz_file_path_ret.replace(".gz", "")

    with gzip.open(gz_file_path_ret, "rb") as f_in:
        with open(parquet_file_path_ret, "wb") as f_out:
            shutil.copyfileobj(f_in, f_out)
    df5 = pd.read_parquet(parquet_file_path_ret)
    # os.remove(parquet_file_path_ret)

    # active_traders.parquet
    active_traders_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="active_traders.parquet",
        repo_type="dataset",
    )
    df6 = pd.read_parquet(active_traders_df)

    # weekly_mech_calls.parquet
    all_mech_calls_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="weekly_mech_calls.parquet",
        repo_type="dataset",
    )
    df7 = pd.read_parquet(all_mech_calls_df)

    # daa for quickstart and pearl
    daa_qs_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="latest_result_DAA_QS.parquet",
        repo_type="dataset",
    )
    df8 = pd.read_parquet(daa_qs_df)

    daa_pearl_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="latest_result_DAA_Pearl.parquet",
        repo_type="dataset",
    )
    df9 = pd.read_parquet(daa_pearl_df)
    # Read weekly_avg_roi_pearl_agents.parquet
    weekly_avg_roi_pearl_agents = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="weekly_avg_roi_pearl_agents.parquet",
        repo_type="dataset",
    )
    df10 = pd.read_parquet(weekly_avg_roi_pearl_agents)

    # two_weeks_avg_roi_pearl_agents.parquet
    two_weeks_avg_roi_pearl_agents = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="two_weeks_avg_roi_pearl_agents.parquet",
        repo_type="dataset",
    )
    df11 = pd.read_parquet(two_weeks_avg_roi_pearl_agents)

    # read traders_weekly_metrics.parquet file
    traders_weekly_metrics_df = hf_hub_download(
        repo_id="valory/Olas-predict-dataset",
        filename="traders_weekly_metrics.parquet",
        repo_type="dataset",
    )
    df12 = pd.read_parquet(traders_weekly_metrics_df)
    return df1, df2, df3, df4, df5, df6, df7, df8, df9, df10, df11, df12


def prepare_data():

    (
        all_trades,
        closed_markets,
        daily_info,
        unknown_traders,
        retention_df,
        active_traders,
        all_mech_calls,
        daa_qs_df,
        daa_pearl_df,
        weekly_avg_roi_pearl_agents,
        two_weeks_avg_roi_pearl_agents,
        traders_weekly_metrics_df,
    ) = load_all_data()
    all_trades["creation_timestamp"] = all_trades["creation_timestamp"].dt.tz_convert(
        "UTC"
    )
    all_trades = all_trades.sort_values(by="creation_timestamp", ascending=True)
    all_trades["creation_timestamp"] = pd.to_datetime(
        all_trades["creation_timestamp"], errors="coerce"
    )
    all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date

    # nr-trades variable
    volume_trades_per_trader_and_market = (
        all_trades.groupby(["trader_address", "title"])["roi"]
        .count()
        .reset_index(name="nr_trades_per_market")
    )

    traders_data = pd.merge(
        all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
    )
    daily_info["creation_timestamp"] = pd.to_datetime(
        daily_info["creation_timestamp"], errors="coerce"
    )
    daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
    unknown_traders["creation_date"] = unknown_traders["creation_timestamp"].dt.date
    active_traders["creation_date"] = active_traders["creation_timestamp"].dt.date
    # adding the trader family column
    traders_data["trader_family"] = traders_data.apply(
        lambda x: get_traders_family(x), axis=1
    )
    # print(traders_data.head())

    traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True)
    unknown_traders = unknown_traders.sort_values(
        by="creation_timestamp", ascending=True
    )
    traders_data["month_year_week"] = (
        traders_data["creation_timestamp"]
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )
    unknown_traders["month_year_week"] = (
        unknown_traders["creation_timestamp"]
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )
    closed_markets["month_year_week"] = (
        closed_markets["opening_datetime"]
        .dt.to_period("W")
        .dt.start_time.dt.strftime("%b-%d-%Y")
    )

    # prepare the daa dataframes
    daa_pearl_df["day"] = pd.to_datetime(
        daa_pearl_df["day"], format="%Y-%m-%d 00:00:00.000 UTC"
    )
    daa_qs_df["day"] = pd.to_datetime(
        daa_qs_df["day"], format="%Y-%m-%d 00:00:00.000 UTC"
    )
    daa_pearl_df["day"] = daa_pearl_df["day"].dt.tz_localize("UTC")
    daa_qs_df["day"] = daa_qs_df["day"].dt.tz_localize("UTC")
    daa_qs_df["tx_date"] = pd.to_datetime(daa_qs_df["day"]).dt.date
    daa_pearl_df["tx_date"] = pd.to_datetime(daa_pearl_df["day"]).dt.date
    daa_pearl_df["seven_day_trailing_avg"] = pd.to_numeric(
        daa_pearl_df["seven_day_trailing_avg"], errors="coerce"
    )
    daa_pearl_df["seven_day_trailing_avg"] = daa_pearl_df[
        "seven_day_trailing_avg"
    ].round(2)
    daa_qs_df["seven_day_trailing_avg"] = pd.to_numeric(
        daa_qs_df["seven_day_trailing_avg"], errors="coerce"
    )
    daa_qs_df["seven_day_trailing_avg"] = daa_qs_df["seven_day_trailing_avg"].round(2)
    return (
        traders_data,
        closed_markets,
        daily_info,
        unknown_traders,
        retention_df,
        active_traders,
        all_mech_calls,
        daa_qs_df,
        daa_pearl_df,
        weekly_avg_roi_pearl_agents,
        two_weeks_avg_roi_pearl_agents,
        traders_weekly_metrics_df,
    )