File size: 8,792 Bytes
175e92c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
"""
CSV Loading Functions for Hugging Face Space Deployment
This module provides functions to load preprocessed data from CSV files
instead of making API calls, which helps avoid rate limiting issues.
"""

import pandas as pd
import logging
from datetime import datetime
from typing import Tuple, Optional
import os

logger = logging.getLogger(__name__)

def load_apr_data_from_csv() -> Tuple[pd.DataFrame, Optional[str]]:
    """
    Load APR data from CSV files.
    
    Returns:
        Tuple of (DataFrame, csv_file_path) or (empty DataFrame, None) if files don't exist
    """
    csv_file = "optimus_apr_values.csv"
    
    try:
        if not os.path.exists(csv_file):
            logger.warning(f"APR CSV file not found: {csv_file}")
            return pd.DataFrame(), None
        
        # Load the CSV file
        df = pd.read_csv(csv_file)
        
        # Convert timestamp column back to datetime
        if 'timestamp' in df.columns:
            df['timestamp'] = pd.to_datetime(df['timestamp'])
        
        # Ensure proper data types
        if 'apr' in df.columns:
            df['apr'] = df['apr'].astype(float)
        if 'adjusted_apr' in df.columns:
            df['adjusted_apr'] = pd.to_numeric(df['adjusted_apr'], errors='coerce')
        if 'agent_id' in df.columns:
            df['agent_id'] = df['agent_id'].astype(str)
        if 'is_dummy' in df.columns:
            df['is_dummy'] = df['is_dummy'].astype(bool)
        
        logger.info(f"Successfully loaded {len(df)} APR records from {csv_file}")
        
        # Log data freshness
        if not df.empty and 'timestamp' in df.columns:
            latest_timestamp = df['timestamp'].max()
            oldest_timestamp = df['timestamp'].min()
            logger.info(f"APR data range: {oldest_timestamp} to {latest_timestamp}")
            
            # Check how fresh the data is
            now = datetime.now()
            if latest_timestamp.tzinfo is None:
                # Make timezone-naive for comparison
                now = now.replace(tzinfo=None)
            
            hours_old = (now - latest_timestamp).total_seconds() / 3600
            logger.info(f"Latest APR data is {hours_old:.1f} hours old")
        
        return df, csv_file
        
    except Exception as e:
        logger.error(f"Error loading APR data from CSV: {e}")
        return pd.DataFrame(), None

def load_roi_data_from_csv() -> Tuple[pd.DataFrame, Optional[str]]:
    """
    Load ROI data from CSV files.
    
    Returns:
        Tuple of (DataFrame, csv_file_path) or (empty DataFrame, None) if files don't exist
    """
    csv_file = "optimus_roi_values.csv"
    
    try:
        if not os.path.exists(csv_file):
            logger.warning(f"ROI CSV file not found: {csv_file}")
            return pd.DataFrame(), None
        
        # Load the CSV file
        df = pd.read_csv(csv_file)
        
        # Convert timestamp column back to datetime
        if 'timestamp' in df.columns:
            df['timestamp'] = pd.to_datetime(df['timestamp'])
        
        # Ensure proper data types
        if 'roi' in df.columns:
            df['roi'] = df['roi'].astype(float)
        if 'agent_id' in df.columns:
            df['agent_id'] = df['agent_id'].astype(str)
        if 'is_dummy' in df.columns:
            df['is_dummy'] = df['is_dummy'].astype(bool)
        
        logger.info(f"Successfully loaded {len(df)} ROI records from {csv_file}")
        
        # Log data freshness
        if not df.empty and 'timestamp' in df.columns:
            latest_timestamp = df['timestamp'].max()
            oldest_timestamp = df['timestamp'].min()
            logger.info(f"ROI data range: {oldest_timestamp} to {latest_timestamp}")
            
            # Check how fresh the data is
            now = datetime.now()
            if latest_timestamp.tzinfo is None:
                # Make timezone-naive for comparison
                now = now.replace(tzinfo=None)
            
            hours_old = (now - latest_timestamp).total_seconds() / 3600
            logger.info(f"Latest ROI data is {hours_old:.1f} hours old")
        
        return df, csv_file
        
    except Exception as e:
        logger.error(f"Error loading ROI data from CSV: {e}")
        return pd.DataFrame(), None

def load_statistics_from_csv() -> pd.DataFrame:
    """
    Load statistics data from CSV file.
    
    Returns:
        DataFrame with statistics or empty DataFrame if file doesn't exist
    """
    csv_file = "optimus_apr_statistics.csv"
    
    try:
        if not os.path.exists(csv_file):
            logger.warning(f"Statistics CSV file not found: {csv_file}")
            return pd.DataFrame()
        
        # Load the CSV file
        df = pd.read_csv(csv_file)
        
        logger.info(f"Successfully loaded statistics from {csv_file}")
        return df
        
    except Exception as e:
        logger.error(f"Error loading statistics from CSV: {e}")
        return pd.DataFrame()

def check_csv_data_availability() -> dict:
    """
    Check which CSV files are available and their basic info.
    
    Returns:
        Dictionary with availability status and file info
    """
    files_info = {}
    
    # Check APR data
    apr_file = "optimus_apr_values.csv"
    if os.path.exists(apr_file):
        try:
            df = pd.read_csv(apr_file)
            files_info['apr'] = {
                'available': True,
                'file': apr_file,
                'records': len(df),
                'size_mb': os.path.getsize(apr_file) / (1024 * 1024),
                'modified': datetime.fromtimestamp(os.path.getmtime(apr_file))
            }
        except Exception as e:
            files_info['apr'] = {'available': False, 'error': str(e)}
    else:
        files_info['apr'] = {'available': False, 'error': 'File not found'}
    
    # Check ROI data
    roi_file = "optimus_roi_values.csv"
    if os.path.exists(roi_file):
        try:
            df = pd.read_csv(roi_file)
            files_info['roi'] = {
                'available': True,
                'file': roi_file,
                'records': len(df),
                'size_mb': os.path.getsize(roi_file) / (1024 * 1024),
                'modified': datetime.fromtimestamp(os.path.getmtime(roi_file))
            }
        except Exception as e:
            files_info['roi'] = {'available': False, 'error': str(e)}
    else:
        files_info['roi'] = {'available': False, 'error': 'File not found'}
    
    # Check statistics data
    stats_file = "optimus_apr_statistics.csv"
    if os.path.exists(stats_file):
        try:
            df = pd.read_csv(stats_file)
            files_info['statistics'] = {
                'available': True,
                'file': stats_file,
                'records': len(df),
                'size_mb': os.path.getsize(stats_file) / (1024 * 1024),
                'modified': datetime.fromtimestamp(os.path.getmtime(stats_file))
            }
        except Exception as e:
            files_info['statistics'] = {'available': False, 'error': str(e)}
    else:
        files_info['statistics'] = {'available': False, 'error': 'File not found'}
    
    return files_info

def get_data_freshness_info() -> dict:
    """
    Get information about how fresh the CSV data is.
    
    Returns:
        Dictionary with freshness information
    """
    info = {}
    
    try:
        # Check APR data freshness
        apr_df, _ = load_apr_data_from_csv()
        if not apr_df.empty and 'timestamp' in apr_df.columns:
            latest_apr = apr_df['timestamp'].max()
            now = datetime.now()
            if latest_apr.tzinfo is None:
                now = now.replace(tzinfo=None)
            
            hours_old = (now - latest_apr).total_seconds() / 3600
            info['apr'] = {
                'latest_data': latest_apr,
                'hours_old': hours_old,
                'is_fresh': hours_old < 24  # Consider fresh if less than 24 hours old
            }
        
        # Check ROI data freshness
        roi_df, _ = load_roi_data_from_csv()
        if not roi_df.empty and 'timestamp' in roi_df.columns:
            latest_roi = roi_df['timestamp'].max()
            now = datetime.now()
            if latest_roi.tzinfo is None:
                now = now.replace(tzinfo=None)
            
            hours_old = (now - latest_roi).total_seconds() / 3600
            info['roi'] = {
                'latest_data': latest_roi,
                'hours_old': hours_old,
                'is_fresh': hours_old < 24  # Consider fresh if less than 24 hours old
            }
        
    except Exception as e:
        logger.error(f"Error checking data freshness: {e}")
        info['error'] = str(e)
    
    return info