File size: 10,436 Bytes
b442155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------
# Modified from minGPT (https://github.com/karpathy/minGPT)
# Copyright (c) 2020 Andrej Karpathy. All Rights Reserved.
# ------------------------------------------------------------------------------------

import torch
import torch.nn as nn
from typing import Optional, Tuple, List
from torch.cuda.amp import autocast
from omegaconf import OmegaConf
from .layers import Block


class Transformer1d(nn.Module):

    def __init__(self,
                 vocab_size_txt: int,
                 vocab_size_img: int,
                 hparams: OmegaConf) -> None:
        super().__init__()
        assert hparams.n_layers == hparams.n_dense_layers

        # input embedding for image and text
        self.tok_emb_img = nn.Embedding(vocab_size_img, hparams.embed_dim)
        self.tok_emb_txt = nn.Embedding(vocab_size_txt, hparams.embed_dim)

        self.pos_emb_img = nn.Embedding(hparams.ctx_len_img, hparams.embed_dim)
        self.pos_emb_txt = nn.Embedding(hparams.ctx_len_txt, hparams.embed_dim)

        self.drop = nn.Dropout(hparams.embd_pdrop)

        # transformer blocks
        self.blocks = [Block(ctx_len=hparams.ctx_len_img + hparams.ctx_len_txt,
                             embed_dim=hparams.embed_dim,
                             n_heads=hparams.n_heads,
                             mlp_bias=hparams.mlp_bias,
                             attn_bias=hparams.attn_bias,
                             resid_pdrop=hparams.resid_pdrop,
                             attn_pdrop=hparams.attn_pdrop,
                             gelu_use_approx=hparams.gelu_use_approx) for i in range(1, hparams.n_layers+1)]
        self.blocks = nn.Sequential(*self.blocks)

        # heads for image and text
        self.ln_f = nn.LayerNorm(hparams.embed_dim)
        self.head_img = nn.Linear(hparams.embed_dim, vocab_size_img, bias=False)
        self.head_txt = nn.Linear(hparams.embed_dim, vocab_size_txt, bias=False)

        self.ctx_len_img = hparams.ctx_len_img
        self.ctx_len_txt = hparams.ctx_len_txt
        self.n_layers = hparams.n_layers

        self.apply(self._init_weights)

    def _init_weights(self, module: nn.Module) -> None:
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def forward(self,
                images: torch.LongTensor,
                texts: torch.LongTensor,
                pos_images: torch.LongTensor,
                pos_texts: torch.LongTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        B, T = images.shape
        _, N = texts.shape

        assert T <= self.ctx_len_img, "Already reached the maximum context length (image)."
        assert N == self.ctx_len_txt, "Already reached the maximum context length (text)."

        texts = self.tok_emb_txt(texts)
        images = self.tok_emb_img(images)

        texts = texts + self.pos_emb_txt(pos_texts)
        images = images + self.pos_emb_img(pos_images)

        x = torch.cat([texts, images], axis=1).contiguous()
        x = self.drop(x)
        x = self.blocks(x)
        x = self.ln_f(x)

        texts = x[:, :N-1].contiguous()
        images = x[:, N-1:-1].contiguous()

        logits_txt = self.head_txt(texts)
        logits_img = self.head_img(images)
        return logits_img, logits_txt

    @torch.no_grad()
    def sampling(self,
                 images: torch.LongTensor,
                 texts: torch.LongTensor,
                 pos_images: torch.LongTensor,
                 pos_texts: torch.LongTensor,
                 use_fp16: bool = True,
                 past: Optional[List[torch.Tensor]] = None) -> Tuple[torch.FloatTensor, List[torch.FloatTensor]]:
        _, N = texts.shape
        assert N == self.ctx_len_txt, "Already reached the maximum context length (text)."

        with autocast(enabled=use_fp16):
            if images is None:
                assert past is None

                texts = self.tok_emb_txt(texts)
                x = texts + self.pos_emb_txt(pos_texts)
                x = self.drop(x)

                presents = []
                for i, block in enumerate(self.blocks):
                    x, present = block.sample(x, layer_past=None)
                    presents.append(present)
                x = self.ln_f(x)
                x = x[:, N-1].contiguous()
                logits = self.head_img(x)
            else:
                if past is None:
                    texts = self.tok_emb_txt(texts)
                    images = self.tok_emb_img(images)
                    texts = texts + self.pos_emb_txt(pos_texts)
                    images = images + self.pos_emb_img(pos_images)
                    x = torch.cat([texts, images], axis=1).contiguous()
                else:
                    images = self.tok_emb_img(images)
                    x = images + self.pos_emb_img(pos_images)
                x = self.drop(x)

                if past is not None:
                    past = torch.cat(past, dim=-2)
                presents = []
                for i, block in enumerate(self.blocks):
                    x, present = block.sample(x, layer_past=None if past is None else past[i])
                    presents.append(present)
                x = self.ln_f(x)
                x = x[:, -1].contiguous()
                logits = self.head_img(x)
            return logits, presents

    def from_ckpt(self, path: str) -> None:
        ckpt = torch.load(path, map_location='cpu')['state_dict']
        self.load_state_dict(ckpt, strict=True)
        print(f'{path} succesfully restored..')


class iGPT(nn.Module):
    def __init__(self,
                 vocab_size_img: int,
                 use_cls_cond: bool,
                 hparams: OmegaConf) -> None:
        super().__init__()
        self.use_cls_cond = use_cls_cond

        # sos token embedding
        if self.use_cls_cond:
            self.sos = nn.Embedding(hparams.n_classes, hparams.embed_dim)
        else:
            self.sos = nn.Parameter(torch.randn(1, 1, hparams.embed_dim))

        # input embedding
        self.tok_emb_img = nn.Embedding(vocab_size_img, hparams.embed_dim)
        self.pos_emb_img = nn.Embedding(hparams.ctx_len_img, hparams.embed_dim)

        self.drop = nn.Dropout(hparams.embd_pdrop)

        # transformer blocks
        self.blocks = [Block(ctx_len=hparams.ctx_len_img + 1,
                             embed_dim=hparams.embed_dim,
                             n_heads=hparams.n_heads,
                             mlp_bias=hparams.mlp_bias,
                             attn_bias=hparams.attn_bias,
                             resid_pdrop=hparams.resid_pdrop,
                             attn_pdrop=hparams.attn_pdrop,
                             gelu_use_approx=hparams.gelu_use_approx) for i in range(1, hparams.n_layers+1)]
        self.blocks = nn.Sequential(*self.blocks)

        # head
        self.ln_f = nn.LayerNorm(hparams.embed_dim)
        self.head = nn.Linear(hparams.embed_dim, vocab_size_img, bias=False)

        self.ctx_len_img = hparams.ctx_len_img
        self.n_layers = hparams.n_layers

        self.apply(self._init_weights)

    def _init_weights(self, module: nn.Module) -> None:
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    @torch.no_grad()
    def sampling(self,
                 sos: torch.FloatTensor,
                 codes: torch.LongTensor,
                 pos_codes: torch.LongTensor,
                 n_samples: int = 16,
                 use_fp16: bool = True,
                 past: Optional[torch.Tensor] = None) -> Tuple[torch.FloatTensor, List[torch.FloatTensor]]:
        with autocast(enabled=use_fp16):
            if codes is None:
                assert past is None
                xs = self.drop(sos)
                presents = []
                for i, block in enumerate(self.blocks):
                    xs, present = block.sample(xs, layer_past=None)
                    presents.append(present)
                xs = self.ln_f(xs)
                logits = self.head(xs)[:, -1]
            else:
                if past is None:
                    xs = self.tok_emb_img(codes) + self.pos_emb_img(pos_codes)
                    xs = torch.cat([sos, xs], dim=1)
                else:
                    xs = self.tok_emb_img(codes) + self.pos_emb_img(pos_codes)
                xs = self.drop(xs)

                past = torch.cat(past, dim=-2) if past is not None else past
                presents = []
                for i, block in enumerate(self.blocks):
                    xs, present = block.sample(xs, layer_past=None if past is None else past[i])
                    presents.append(present)

                xs = self.ln_f(xs)
                logits = self.head(xs)[:, -1]
            return logits, presents

    def forward(self,
                codes: torch.LongTensor,
                labels: Optional[torch.LongTensor] = None) -> torch.FloatTensor:
        B, T = codes.shape
        xps = torch.arange(T, device=codes.device).repeat((B, 1))
        sos = self.sos.repeat((B, 1, 1)) if labels is None else self.sos(labels).unsqueeze(1)

        h = self.tok_emb_img(codes) + self.pos_emb_img(xps)
        h = torch.cat([sos, h[:, :-1]], dim=1).contiguous()

        h = self.drop(h)
        h = self.blocks(h)
        h = self.ln_f(h)
        logits = self.head(h)
        return logits

    def from_ckpt(self, path: str, strict: bool = True) -> None:
        ckpt = torch.load(path, map_location='cpu')['state_dict']
        self.load_state_dict(ckpt, strict=strict)
        print(f'{path} successfully restored..')