File size: 5,563 Bytes
b442155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------
# Modified from minGPT (https://github.com/karpathy/minGPT)
# Copyright (c) 2020 Andrej Karpathy. All Rights Reserved.
# ------------------------------------------------------------------------------------

import math
import torch
import torch.nn as nn
from torch.nn import functional as F


class GELU(nn.Module):
    def __init__(self, use_approx=False):
        super().__init__()
        self.use_approx = use_approx

    def forward(self, x):
        if self.use_approx:
            return x * torch.sigmoid(1.702 * x)
        else:
            return F.gelu(x)


class MultiHeadSelfAttention(nn.Module):

    def __init__(self,
                 ctx_len: int,
                 embed_dim: int,
                 n_heads: int,
                 resid_pdrop: float,
                 attn_pdrop: float,
                 attn_bias: bool,
                 use_mask: bool = True):
        super().__init__()
        assert embed_dim % n_heads == 0

        # key, query, value projections for all heads
        self.key = nn.Linear(embed_dim, embed_dim, bias=attn_bias)
        self.query = nn.Linear(embed_dim, embed_dim, bias=attn_bias)
        self.value = nn.Linear(embed_dim, embed_dim, bias=attn_bias)

        # regularization
        self.attn_drop = nn.Dropout(attn_pdrop)
        self.resid_drop = nn.Dropout(resid_pdrop)

        # output projection
        self.proj = nn.Linear(embed_dim, embed_dim, attn_bias)

        self.n_heads = n_heads
        self.ctx_len = ctx_len
        self.use_mask = use_mask
        if self.use_mask:
            self.register_buffer("mask", torch.ones(ctx_len, ctx_len), persistent=False)
            self.mask = torch.tril(self.mask).view(1, ctx_len, ctx_len)

    def forward(self, x, use_cache=False, layer_past=None):
        B, T, C = x.shape
        x = x.transpose(0, 1).contiguous()  # (B, T, C) -> (T, B, C)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = self.key(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)
        q = self.query(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)
        v = self.value(x).view(T, B*self.n_heads, C//self.n_heads).transpose(0, 1)  # (B*nh, T, hs)

        if use_cache:
            present = torch.stack([k, v])

        if layer_past is not None:
            past_key, past_value = layer_past
            k = torch.cat([past_key, k], dim=-2)
            v = torch.cat([past_value, v], dim=-2)

        if use_cache and layer_past is not None:
            # Tensor shape below: (B * nh, 1, hs) X (B * nh, hs, K) -> (B * nh, 1, K)
            att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
            att = F.softmax(att, dim=-1)
            att = self.attn_drop(att)
            y = torch.bmm(att, v)  # (B*nh, 1, K) X (B*nh, K, hs) -> (B*nh, 1, hs)
        else:
            # Tensor shape below: (B * nh, T, hs) X (B * nh, hs, T) -> (B * nh, T, T)
            att = torch.bmm(q, (k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))))
            if self.use_mask:
                mask = self.mask if T == self.ctx_len else self.mask[:, :T, :T]
                att = att.masked_fill(mask == 0, float('-inf'))
            att = F.softmax(att, dim=-1)
            att = self.attn_drop(att)
            y = torch.bmm(att, v)  # (B*nh, T, T) X (B*nh, T, hs) -> (B*nh, T, hs)
        y = y.transpose(0, 1).contiguous().view(T, B, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))
        if use_cache:
            return y.transpose(0, 1).contiguous(), present  # (T, B, C) -> (B, T, C)
        else:
            return y.transpose(0, 1).contiguous()  # (T, B, C) -> (B, T, C)


class Block(nn.Module):

    def __init__(self,
                 ctx_len: int,
                 embed_dim: int,
                 n_heads: int,
                 mlp_bias: bool,
                 attn_bias: bool,
                 resid_pdrop: bool,
                 attn_pdrop: bool,
                 gelu_use_approx: bool):
        super().__init__()
        self.ln1 = nn.LayerNorm(embed_dim)
        self.ln2 = nn.LayerNorm(embed_dim)

        self.attn = MultiHeadSelfAttention(ctx_len=ctx_len,
                                           embed_dim=embed_dim,
                                           n_heads=n_heads,
                                           attn_pdrop=attn_pdrop,
                                           resid_pdrop=resid_pdrop,
                                           attn_bias=attn_bias,
                                           use_mask=True)
        self.mlp = nn.Sequential(
            nn.Linear(embed_dim, 4 * embed_dim, bias=mlp_bias),
            GELU(gelu_use_approx),
            nn.Linear(4 * embed_dim, embed_dim, bias=mlp_bias),
            nn.Dropout(resid_pdrop),
        )

    def forward(self, x):
        x = x + self.attn(self.ln1(x))
        x = x + self.mlp(self.ln2(x))
        return x

    def sample(self, x, layer_past=None):
        attn, present = self.attn(self.ln1(x), use_cache=True, layer_past=layer_past)
        x = x + attn
        x = x + self.mlp(self.ln2(x))
        return x, present