Spaces:
Sleeping
Sleeping
File size: 1,960 Bytes
9fd19e8 d0ce03d c2697f2 d0ce03d 9fd19e8 dd37c0d 9fd19e8 dd37c0d d0ce03d dd37c0d 525729b dd37c0d d0ce03d dd37c0d d0ce03d dd37c0d d01a7a3 7e7097e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
import math
import pkg_resources # Для получения списка пакетов
def get_installed_packages_formatted_for_description():
installed_packages = pkg_resources.working_set
# Форматируем в одну строку с переносами для Markdown
packages_list_str = "\n".join(sorted([f"- {i.key}=={i.version}" for i in installed_packages]))
return f"\n\n---\n**Установленные пакеты:**\n{packages_list_str}"
# Получаем список пакетов один раз при запуске скрипта
installed_packages_info_desc = get_installed_packages_formatted_for_description()
def compute_projectile_distance(initial_speed, angle):
"""
Calculate the horizontal distance traveled by a projectile.
Parameters:
initial_speed (float): Initial speed of the projectile in m/s
angle (float): Launch angle in degrees
Returns:
float: Horizontal distance traveled in meters
"""
# Convert angle from degrees to radians
angle_rad = math.radians(angle)
# Gravitational acceleration (m/s²)
g = 9.81
# Calculate the horizontal distance using the projectile motion formula:
# distance = (initial_speed² * sin(2*angle)) / g
distance = (initial_speed**2 * math.sin(2 * angle_rad)) / g
return distance
app = gr.Interface(
fn=compute_projectile_distance,
inputs=["number", "number"],
outputs="number",
title="Compute Projectile Distance",
description=("Computes the theoretical horizontal distance a projectile travels for a given initial speed and angle."
"for a given initial speed and angle."
f"{installed_packages_info_desc}" # Добавляем сюда информацию о пакетах
)
)
#app.launch(mcp_server= True , share= True)
#app.launch(mcp_server=True, server_name="0.0.0.0")
app.launch(mcp_server=True)
|