Spaces:
Running
Running
File size: 1,407 Bytes
545ec70 336a7dd a205074 336a7dd ca7863d 4f68f2f 545ec70 a205074 545ec70 4f68f2f a205074 336a7dd ca7863d a205074 ca7863d 336a7dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
import numpy as np
import io
import os
import wave
import requests
from audio_to_text import audio_to_text
from streamlit_mic_recorder import mic_recorder
# Get the directory of the current file
current_dir = os.path.dirname(os.path.abspath(__file__))
# Initialize Streamlit app layout
st.title("Microphone Input in Streamlit")
# Record audio
audio = mic_recorder(
start_prompt="Start recording",
stop_prompt="Stop recording",
just_once=False,
use_container_width=True
)
# Check if audio is recorded
if audio:
st.audio(audio['bytes'], format='audio/wav')
audio_bytes = audio["bytes"]
# Save audio in WEBM format
with open("recorded_audio.webm", "wb") as webm_file:
webm_file.write(audio_bytes)
# Convert audio to text
transcription = audio_to_text("recorded_audio.webm")
# Display the transcription
st.write("Transcription:", transcription)
API_URL = "https://eaa0-34-74-179-199.ngrok-free.app/generate"
# Optionally, send the transcription to an API
headers = {
"Content-Type": "application/json"
}
payload = {
"prompt": transcription
}
response = requests.post(API_URL, json=payload, headers=headers)
if response.status_code == 200:
st.write("Assistant:", response.json())
else:
st.write("Error:", response.status_code, response.text)
|