Spaces:
Sleeping
Sleeping
File size: 36,474 Bytes
7f07e2c 3eef55c 7f07e2c 0179e17 3eef55c 7f07e2c 3eef55c 7f07e2c 3eef55c 7f07e2c 3eef55c 7f07e2c 3eef55c 2ddb5e6 3eef55c c518731 3eef55c c518731 e09b5d3 3eef55c e09b5d3 3eef55c 1418dfd 3eef55c e09b5d3 3eef55c e09b5d3 3eef55c e09b5d3 3eef55c e09b5d3 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 1418dfd 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 3eef55c 8cd4630 c518731 3eef55c 0179e17 3eef55c 0179e17 3eef55c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 |
import streamlit as st
import base64
import openai
import numpy as np
import cv2
from tensorflow.keras.models import load_model
from keras.preprocessing.image import img_to_array
from keras.applications.inception_v3 import preprocess_input
import requests
import json_repair
import json
from PIL import Image
import io
from datetime import datetime
import pandas as pd
import re
from json_repair import repair_json
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Class labels for defect prediction
class_labels = [
"algae",
"bubbles",
"Cracks",
"Fungus",
"peeling",
]
# Set OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# Page configuration
st.set_page_config(
page_title="Painting Defect Detection System",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main {
padding-top: 2rem;
}
.stAlert {
margin-top: 1rem;
}
.defect-card {
border: 1px solid #ddd;
border-radius: 8px;
padding: 1rem;
margin: 1rem 0;
background-color: #f9f9f9;
}
.metric-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
padding: 1rem;
border-radius: 8px;
color: white;
text-align: center;
margin: 0.5rem 0;
}
</style>
""", unsafe_allow_html=True)
# Cache the model loading to improve performance
@st.cache_resource
def load_trained_model():
try:
return load_model('painting.keras')
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return None
def compress_image(image_bytes, max_size_kb=500):
img = Image.open(io.BytesIO(image_bytes))
quality = 95
output_bytes = io.BytesIO()
while True:
output_bytes.seek(0)
output_bytes.truncate()
img.save(output_bytes, format='JPEG', quality=quality)
if len(output_bytes.getvalue()) <= max_size_kb * 1024 or quality <= 5:
break
quality -= 5
return output_bytes.getvalue()
def get_direct_drive_url(share_url):
if "drive.google.com/file/d/" in share_url:
file_id = share_url.split("/file/d/")[1].split("/")[0]
return f"https://drive.google.com/uc?export=download&id={file_id}"
return share_url
def process_image(url):
try:
file_id = re.search(r'/d/(.*?)/', url)
if file_id: # Google Drive share link
url = f'https://drive.google.com/uc?export=download&id={file_id.group(1)}'
resp = requests.get(url, timeout=15)
resp.raise_for_status()
if 'image' not in resp.headers.get('Content-Type', ''):
raise ValueError('URL does not point to an image')
img = cv2.imdecode(np.frombuffer(resp.content, np.uint8), cv2.IMREAD_COLOR)
input_img_resized = cv2.resize(img, (256, 256))
x = img_to_array(input_img_resized)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x, resp.content
except Exception as e:
st.error(f"Error processing image from URL: {e}")
return None, None
def process_uploaded_image(uploaded_file):
try:
image_bytes = uploaded_file.read()
img = Image.open(io.BytesIO(image_bytes))
img_array = np.array(img)
# Convert RGB to BGR for OpenCV
if len(img_array.shape) == 3:
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
input_img_resized = cv2.resize(img_array, (256, 256))
x = img_to_array(input_img_resized)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
return x, image_bytes
except Exception as e:
st.error(f"Error processing uploaded image: {e}")
return None, None
def predict_defect(processed_image, model):
try:
preds = model.predict(processed_image)[0]
class_index = int(np.argmax(preds))
confidence = float(preds[class_index])
class_name = class_labels[class_index]
return {
"type": class_name,
"severity": confidence
}, class_index
except Exception as e:
return {"error": str(e)}, []
def compress_image_to_base64(image_bytes, max_size_kb=500):
img = Image.open(io.BytesIO(image_bytes)).convert("RGB")
output_bytes = io.BytesIO()
quality = 95
while True:
output_bytes.seek(0)
output_bytes.truncate()
img.save(output_bytes, format='JPEG', quality=quality)
if len(output_bytes.getvalue()) <= max_size_kb * 1024 or quality <= 5:
break
quality -= 5
return base64.b64encode(output_bytes.getvalue()).decode('utf-8')
def generate_openai_description(classification, image_bytes):
try:
if isinstance(classification, dict) and 'type' in classification:
defect_type = classification['type']
elif isinstance(classification, dict) and 'error' in classification:
defect_type = "Unknown defect"
else:
defect_type = str(classification)
# Compress and encode image to base64
compressed_base64 = compress_image_to_base64(image_bytes)
ai_prompt = (
f"You are an expert painting inspector analyzing surface defects."
f"DETECTED DEFECTS: {defect_type}"
f"TASK: Examine the painted surface image and provide a technical description of the visible defects."
f"REQUIREMENTS:"
f"- Write 200 characters describing what you observe"
f"- Focus on visible paint failures, surface irregularities, or coating issues"
f"- Use professional painting and coating terminology"
f"- Be specific about location, extent, and characteristics of defects"
f"- If multiple defects are present, describe each one"
f"- Maintain an objective, technical tone"
f"Dont use \\n"
f"IMPORTANT: Always provide a description based on what you can see in the image. "
f"Even if the detected defect types seem unclear, describe the actual visible conditions "
f"in the painted surface. Only respond with 'Unable to generate description due to "
f"image quality issues' if the image is genuinely too blurry, dark, or corrupted to analyze."
f"Begin your description now:")
# Call OpenAI with image and text
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": ai_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{compressed_base64}"}}
]
}
]
)
result_text = response.choices[0].message.content.strip()
return result_text
except Exception as e:
return f"Error generating description: {str(e)}"
def get_sps(defect_type, flooring_type,defect_category="flooring"):
ai_content = """ You are an expert in identifying and resolving painting and wall surface defects.
Your task is to accept a defect name and surface type as input and return applicable solutions using the structured dataset below.
IMPORTANT: You MUST respond with valid JSON only. Do not include any explanatory text before or after the JSON.
Instructions:
Return TWO separate categories of solutions:
MANDATORY SPS: Solutions specifically matching the input defect
OPTIONAL SPS: Solutions from 'All Defects' records (universal solutions)
For MANDATORY SPS:
Match the input defect against the 'Defects' column using:
Exact match
Partial match (e.g. 'Cracks' matches all 'Cracks' records)
EXCLUDE any 'All Defects' records from this section
Only return records where the 'Category' matches the specified surface type (NonWaterproofing or Waterproofing)
For OPTIONAL SPS:
ONLY include records where 'Defects' is 'All Defects', 'ALL Defects', or 'All Defect'
Filter by surface type:
If surface_type is "NonWaterproofing": Return records with Category="NonWaterproofing"
If surface_type is "Waterproofing": Return records with Category="Waterproofing"
Return only those matching the specified surface type
For each valid record in both categories:
Use the id from the dataset. If not available, generate a unique numeric ID.
Use the title from the dataset. If not available, use appropriate fallback title based on surface type
Use the description from the dataset exactly (verbatim). If not found, generate fallback content based on best practices.
CRITICAL FOR PRODUCT EXTRACTION:
Carefully analyze the description content for ANY product names, brand names, or material references
Extract ALL product names mentioned in the description, including:
Brand names (e.g., "Asian Paints SmartCare Crack Seal")
Generic product names (e.g., "Economy Primer", "Ace Suprema")
Material names (e.g., "white cement", "fine sand")
Tool names (e.g., "Putty Knife", "Paint Scraper")
Chemical names (e.g., "oxygen bleach", "chlorinated bleach")
List them in products array, assigning a unique ID per product
NEVER leave products array empty - if no specific products are mentioned, include generic alternatives like "Primer", "Paint", "Cleaning Solution", etc.
Include all records where Category matches the filtering condition
IMPORTANT: Remove all HTML tags from the description content. Convert HTML lists to plain text format.
Product Extraction Examples:
"Use Asian Paints SmartCare Crack Seal" β Extract: "Asian Paints SmartCare Crack Seal"
"Economy Primer, Ace Suprema" β Extract: "Economy Primer", "Ace Suprema"
"Use boiling water, pressure washers, oxygen bleach" β Extract: "Pressure Washer", "Oxygen Bleach"
"Sand with medium-grit sandpaper" β Extract: "Medium-grit Sandpaper"
If no matching dataset entry is found for MANDATORY SPS, return one fallback solution following industry-standard practices for the specified surface type (without stating it is a fallback).
Each solution must follow standard practices such as:
Surface preparation
Cleaning and washing
Priming
Crack filling
Sanding
Paint application
Sealing
Moisture treatment
Finishing
Each solution must follow standard practices such as:
- Surface preparation
- Cleaning and washing
- Priming
- Crack filling
- Sanding
- Paint application
- Sealing
- Moisture treatment
- Finishing
Return ONLY this JSON format (no other text):
{
"mandatory_sps": [
{
"id": 181,
"title": "Surface Preparation for Cracks - NonWaterproofing",
"content": "New masonry surfaces must be allowed to cure completely. It is recommended to allow 28 days as the curing time for new masonry surfaces. Opening the cracks with the help of a grinder/cutter and cleaning the surface with pressure washers for further treatment. FILLING FOR CRACKS For filling cracks up to 3mm, use Asian Paints SmartCare Crack Seal. For filling cracks more than 3mm, use Asian Paints SmartCare Textured Crack Filler. FILLING FOR HOLES & DENTS In case of dents and holes, use TruCare Wall Putty Suprema or a mix of white cement and fine sand in the ratio 1:3.",
"products": [
{
"id": 1,
"product_name": "Asian Paints SmartCare Crack Seal"
},
{
"id": 2,
"product_name": "Asian Paints SmartCare Textured Crack Filler"
},
{
"id": 3,
"product_name": "TruCare Wall Putty Suprema"
}
]
}
],
"optional_sps": [
{
"id": 211,
"title": "4 Year Paint Warranty System - NonWaterproofing",
"content": "Economy Primer, Ace Suprema",
"products": [
{
"id": 4,
"product_name": "Economy Primer"
},
{
"id": 5,
"product_name": "Ace Suprema"
}
]
}
]
}
Dataset:
id: 181
Defects: Cracks
Category: NonWaterproofing
title: Surface Preparation for Cracks - NonWaterproofing
description: New masonry surfaces must be allowed to cure completely. It is recommended to allow 28 days as the curing time for new masonry surfaces. Opening the cracks with the help of a grinder/cutter and cleaning the surface with pressure washers for further treatment.
FILLING FOR CRACKS
For filling cracks up to 3mm, use Asian Paints SmartCare Crack Seal.
For filling cracks more than 3mm, use Asian Paints SmartCare Textured Crack Filler.
FILLING FOR HOLES & DENTS
In case of dents and holes, use TruCare Wall Putty Suprema or a mix of white cement and fine sand in the ratio 1:3.
id: 182
Defects: Cracks
Category: Waterproofing
title: Surface Preparation for Cracks - Waterproofing
description: New masonry surfaces must be allowed to cure completely. It is recommended to allow 28 days as the curing time for new masonry surfaces. Opening the cracks with the help of a grinder/cutter and cleaning the surface with pressure washers for further treatment.
FILLING FOR CRACKS
For filling cracks up to 3mm, use Asian Paints SmartCare Crack Seal.
For filling cracks more than 3mm, use Asian Paints SmartCare Textured Crack Filler.
FILLING FOR HOLES & DENTS
In case of dents and holes, use TruCare Wall Putty Suprema or a mix of white cement and fine sand in the ratio 1:3.
id: 183
Defects: Patchiness
Category: NonWaterproofing
title: Surface Preparation for Patchiness - NonWaterproofing
description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
id: 184
Defects: Patchiness
Category: Waterproofing
title: Surface Preparation for Patchiness - Waterproofing
description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
id: 185
Defects: Peeling
Category: NonWaterproofing
title: Surface Preparation for Peeling - NonWaterproofing
description: Use Putty Knife or Paint Scraper for removing loose and peeling paint without damaging the underlying surface.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface for further treatment
Surface should be free from any loose paint, dust or grease.Growths of fungus, algae or moss should be removed by wire brushing and water.
id: 186
Defects: Peeling
Category: Waterproofing
title: Surface Preparation for Peeling - Waterproofing
description: Use Putty Knife or Paint Scraper for removing loose and peeling paint without damaging the underlying surface.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface for further treatment
Surface should be free from any loose paint, dust or grease.Growths of fungus, algae or moss should be removed by wire brushing and water.
id: 187
Defects: Algae
Category: NonWaterproofing
title: Surface Preparation for Algae - NonWaterproofing
description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial algae removers to get rid of green algae on concrete. Pressure wash and scrape the wall with a soft brush
id: 188
Defects: Algae
Category: Waterproofing
title: Surface Preparation for Algae - Waterproofing
description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial algae removers to get rid of green algae on concrete. Pressure wash and scrape the wall with a soft brush
id: 189
Defects: Bubble
Category: NonWaterproofing
title: Surface Preparation for Bubble - NonWaterproofing
description: If moisture is the issue, fix any leaks or dampness before proceeding. Moisture must be fully resolved to prevent new bubbling. Remove the buubled paint by using the scraper to peel off the loose and raised areas.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
id: 190
Defects: Bubble
Category: Waterproofing
title: Surface Preparation for Bubble - Waterproofing
description: If moisture is the issue, fix any leaks or dampness before proceeding. Moisture must be fully resolved to prevent new bubbling. Remove the buubled paint by using the scraper to peel off the loose and raised areas.Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
id: 191
Defects: Blisters
Category: NonWaterproofing
title: Surface Preparation for Blisters - NonWaterproofing
description: Remove blisters by scraping, sanding or pressure-washing down to underlying coats of paint or primer.Repair loose caulking and improve ventilation of the building to prevent a recurring problem
id: 192
Defects: Blisters
Category: Waterproofing
title: Surface Preparation for Blisters - Waterproofing
description: Remove blisters by scraping, sanding or pressure-washing down to underlying coats of paint or primer.Repair loose caulking and improve ventilation of the building to prevent a recurring problem
id: 193
Defects: Efflorescense
Category: NonWaterproofing
title: Surface Preparation for Efflorescense - NonWaterproofing
description: Stiff brushes are used to sweep away efflorescence from smoother surfaces.Apply a forceful water rinse to efflorescence with a pressure washer to clean it up
id: 194
Defects: Efflorescense
Category: Waterproofing
title: Surface Preparation for Efflorescense - Waterproofing
description: Stiff brushes are used to sweep away efflorescence from smoother surfaces.Apply a forceful water rinse to efflorescence with a pressure washer to clean it up
id: 195
Defects: Fungus
Category: NonWaterproofing
title: Surface Preparation for Fungus - NonWaterproofing
description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial fungus removers to get rid of fungus on concrete. Pressure wash and scrape the wall with a soft brush
id: 196
Defects: Fungus
Category: Waterproofing
title: Surface Preparation for Fungus - Waterproofing
description: Use boiling water, pressure washers, oxygen bleach, chlorinated bleach, and commercial fungus removers to get rid of fungus on concrete. Pressure wash and scrape the wall with a soft brush
id: 197
Defects: Poor Hiding
Category: NonWaterproofing
title: Surface Preparation for Poor Hiding - NonWaterproofing
description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
id: 198
Defects: Poor Hiding
Category: Waterproofing
title: Surface Preparation for Poor Hiding - Waterproofing
description: Sand the surface with medium-grit sandpaper to remove major surface irregularities bumps and rough patches. Switch to fine-grit sandpaper for final smoothing. Work in small circular motions overlapping each area. Remove all sanding dust by cleaning the surface with pressure washers for further treatment
id: 199
Defects: Shade variation
Category: NonWaterproofing
title: Surface Preparation for Shade variation - NonWaterproofing
description: Remove Loose Material: Carefully strip away loose or blistered paint to expose a firm surface.Spot Priming: Apply an appropriate primer to the affected area, ensuring adhesion.
id: 200
Defects: Shade variation
Category: Waterproofing
title: Surface Preparation for Shade variation - Waterproofing
description: Remove Loose Material: Carefully strip away loose or blistered paint to expose a firm surface.Spot Priming: Apply an appropriate primer to the affected area, ensuring adhesion.
id: 211
Defects: All Defects
Category: NonWaterproofing
title: 4 Year Paint Warranty System - NonWaterproofing
description: Economy Primer, Ace Suprema
id: 212
Defects: All Defects
Category: NonWaterproofing
title: 7 year Paint Warranty System - NonWaterproofing
description: Economy Primer, Apex Suprema
id: 213
Defects: All Defects
Category: NonWaterproofing
title: 8 year Paint Warranty System - NonWaterproofing
description: Exterior Primer, Ultima Strech Suprema
id: 214
Defects: All Defects
Category: NonWaterproofing
title: 9 year Paint Warranty System - NonWaterproofing
description: Exterior Primer, Ultima Suprema
id: 215
Defects: All Defects
Category: NonWaterproofing
title: 12 year Paint Warranty System - NonWaterproofing
description: Exterior Primer, Protek Topcoat
id: 216
Defects: All Defects
Category: NonWaterproofing
title: 15 year Paint Warranty System - NonWaterproofing
description: Exterior Primer, Duralife Topcoat
id: 217
Defects: All Defects
Category: Waterproofing
title: 4 year Complete Paint Warranty System - Waterproofing
description: Damp Sheath suprema, Ace Suprema
id: 218
Defects: All Defects
Category: Waterproofing
title: 6 year Complete Paint Warranty System - Waterproofing
description: Damp Proof Suprema, Apex Suprema
id: 219
Defects: All Defects
Category: Waterproofing
title: 8 year Complete Paint Warranty System - Waterproofing
description: Damp Proof Suprema, Ultima Strech Suprema
id: 220
Defects: All Defects
Category: Waterproofing
title: 10 year Complete Paint Warranty System - Waterproofing
description: Damp Prime Xtreme, Ultima Stretch Suprema
id: 221
Defects: All Defects
Category: Waterproofing
title: 12 year Complete Paint Warranty System - Waterproofing
description: Protek Basecoat, Protek Topcoat
id: 222
Defects: All Defects
Category: Waterproofing
title: 15 year Complete Paint Warranty System - Waterproofing
description: Duralife Basecoat, Duralife Topcoat
"""
def remove_html_tags(text):
"""Remove HTML tags and convert lists to plain text format"""
if not text:
return text
text = re.sub(r'<li>(.*?)</li>', r'β’ \1', text, flags=re.IGNORECASE | re.DOTALL)
text = re.sub(r'<[^>]+>', '', text)
text = re.sub(r'\s+', ' ', text).strip()
text = text.replace('\n', ' ').replace('\r', '')
return text
try:
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=[
{
"role": "system",
"content": ai_content
},
{
"role": "user",
"content": f"Generate recommended solutions for defect '{defect_type}' with painting type '{flooring_type}'. Return valid JSON only with both mandatory SPS and optional SPS that match the '{type}' . Remove HTML tags from content."
}
],
max_tokens=2000, # Increased token limit
temperature=0.1, # Lower temperature for more consistent responses
)
ai_description = response.choices[0].message.content.strip()
ai_description = ai_description.replace('\n', ' ').replace('\r', '')
clean_response = ai_description
if clean_response.startswith('```json'):
clean_response = clean_response[7:]
elif clean_response.startswith('```'):
clean_response = clean_response[3:]
if clean_response.endswith('```'):
clean_response = clean_response[:-3]
clean_response = clean_response.strip()
try:
import json
response_data = json.loads(clean_response)
mandatory_sps = []
if 'mandatory_sps' in response_data and isinstance(response_data['mandatory_sps'], list):
for item in response_data['mandatory_sps']:
if isinstance(item, dict) and 'content' in item:
item['content'] = remove_html_tags(item['content'])
mandatory_sps.append(item)
optional_sps = []
if 'optional_sps' in response_data and isinstance(response_data['optional_sps'], list):
for item in response_data['optional_sps']:
if isinstance(item, dict) and 'content' in item:
item['content'] = remove_html_tags(item['content'])
optional_sps.append(item)
if not mandatory_sps and not optional_sps:
print("AI returned empty response")
# return create_fallback_response(defect_type, flooring_type)
return mandatory_sps, optional_sps
except json.JSONDecodeError as json_error:
try:
json_start = clean_response.find('{')
json_end = clean_response.rfind('}')
if json_start != -1 and json_end != -1 and json_end > json_start:
potential_json = clean_response[json_start:json_end+1]
potential_json = potential_json.replace("'", '"') # Replace single quotes
potential_json = re.sub(r',\s*}', '}', potential_json) # Remove trailing commas
potential_json = re.sub(r',\s*]', ']', potential_json) # Remove trailing commas in arrays
response_data = json.loads(potential_json)
mandatory_sps = []
if 'mandatory_sps' in response_data and isinstance(response_data['mandatory_sps'], list):
for item in response_data['mandatory_sps']:
if isinstance(item, dict) and 'content' in item:
item['content'] = remove_html_tags(item['content'])
mandatory_sps.append(item)
optional_sps = []
if 'optional_sps' in response_data and isinstance(response_data['optional_sps'], list):
for item in response_data['optional_sps']:
if isinstance(item, dict) and 'content' in item:
item['content'] = remove_html_tags(item['content'])
optional_sps.append(item)
return mandatory_sps, optional_sps
except Exception as recovery_error:
print(f"JSON recovery failed: {recovery_error}")
print("Using fallback response due to JSON parsing failure")
except Exception as e:
print(f"Error in OpenAI API call: {str(e)}")
def main():
st.title("π Painting Defect Detection System")
st.markdown("---")
# Load the model
model = load_trained_model()
if model is None:
st.error("Failed to load the defect detection model. Please check if the model file exists.")
return
# Sidebar for input options
st.sidebar.header("π Input Configuration")
# Report details
st.sidebar.subheader("Report Details")
report_submission_id = st.sidebar.text_input("Report Submission Id", value=1)
report_section_page_id = st.sidebar.text_input("Page ID", value=7)
report_section_id = st.sidebar.text_input("Section ID", value=10)
defect_type = st.sidebar.text_input("Defect Type", value="painting")
type = st.sidebar.text_input("Type", value="NonWaterproofing")
# Input method selection
input_method = "Image URLs"
# Main content area
col1, col2 = st.columns([2, 1])
with col1:
st.header("πΈ Image Input")
st.subheader("Enter Image URLs")
image_data_list = []
classifications = []
num_urls = st.number_input("Number of images", min_value=1, max_value=10, value=1)
urls = []
for i in range(num_urls):
url = st.text_input(f"Image URL {i+1}", key=f"url_{i}")
if url:
urls.append(url)
if st.button("Process URLs", type="primary"):
for i, url in enumerate(urls):
if url.strip():
st.subheader(f"Image {i+1}")
with st.spinner(f"Processing image {i+1}..."):
processed_img, image_bytes = process_image(url)
if processed_img is not None and image_bytes is not None:
# Display the image
image = Image.open(io.BytesIO(image_bytes))
st.image(image, caption=f"Image {i+1}", width=300)
classification, dpoc = predict_defect(processed_img, model)
classifications.append(classification['type'] if 'type' in classification else 'Unknown')
# Generate OpenAI description
openai_desc = generate_openai_description(classification, image_bytes)
image_data_list.append({
"url": url,
"defect_classification": classification,
"individual_dopc": dpoc,
"tags": [classification['type']] if 'type' in classification else ["Unknown"],
"openai_desc": openai_desc,
})
# Display results
if 'type' in classification:
st.success(f"**Detected Defect:** {classification['type']}")
st.info(f"**Confidence:** {classification['severity']:.2%}")
else:
st.error(f"**Error:** {classification.get('error', 'Unknown error')}")
st.markdown("---")
with col2:
st.header("π Analysis Summary")
if classifications:
# Display metrics
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
st.metric("Total Images", len(classifications))
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
st.metric("Unique Defects", len(set(classifications)))
st.markdown('</div>', unsafe_allow_html=True)
# Defect distribution
if len(classifications) > 1:
st.subheader("Defect Distribution")
defect_counts = pd.Series(classifications).value_counts()
st.bar_chart(defect_counts)
# Display class labels
st.subheader("π·οΈ Supported Defect Types")
for label in class_labels:
st.write(f"β’ {label}")
# Generate comprehensive report
if image_data_list:
st.markdown("---")
st.header("π Detailed Analysis Report")
# Generate SPS recommendations
if classifications:
with st.spinner("Generating recommended solutions..."):
user_message = ", ".join(set(classifications))
mandatory_sps, optional_sps = get_sps(user_message,type)
# Display detailed results for each image
for i, image_data in enumerate(image_data_list):
with st.expander(f"π· Image {i+1} - Detailed Analysis", expanded=True):
col1, col2 = st.columns([1, 2])
with col1:
if 'file_name' in image_data:
st.write(f"**File:** {image_data['file_name']}")
if 'url' in image_data:
st.write(f"**URL:** {image_data['url'][:50]}...")
classification = image_data['defect_classification']
if 'type' in classification:
st.write(f"**Defect Type:** {classification['type']}")
st.write(f"**Severity:** {classification['severity']:.2%}")
with col2:
st.write("**OpenAI Analysis:**")
st.text_area("", image_data['openai_desc'], height=150, key=f"desc_{i}")
# Display SPS recommendations
# Export results
# Export results
ai_response = {}
boq_list = []
ids = [sps["id"] for sps in optional_sps]
sps_boq_map = {
211:58,
212:59,
213:60,
214:61,
215:62,
216:63,
217:64,
218:65,
219:66,
220:67,
221:57,
222:49
}
boq_list = list([sps_boq_map[sps_id] for sps_id in ids if sps_id in sps_boq_map])
ai_response = {
"report_id": report_submission_id,
"page_id": report_section_page_id,
"section_id": report_section_id,
"defect_type": defect_type,
"images": image_data_list,
"mandatory_sps": mandatory_sps,
"optional_sps": optional_sps,
"boq_list": boq_list
}
# if st.button("π€ Export Results as JSON", type="secondary"):
# ai_response = {
# "report_id": report_submission_id,
# "page_id": report_section_page_id,
# "section_id": report_section_id,
# "defect_type": defect_type,
# "images": image_data_list,
# "mandatory_sps": mandatory_sps,
# "optional_sps": optional_sps
# }
st.subheader("π¦ JSON Response Preview")
with st.expander("View JSON Response", expanded=False):
st.json(json.loads(json.dumps(ai_response, indent=2, ensure_ascii=False)))
# π₯ Download button
st.download_button(
label="Download JSON Report",
data=json.dumps(ai_response, indent=2),
file_name=f"defect_report_{report_submission_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
if __name__ == "__main__":
main() |