File size: 7,199 Bytes
8b5e432
 
2067800
b019cc7
8b5e432
 
2067800
8b5e432
b019cc7
 
 
 
 
 
 
 
8b5e432
6d117d1
8b5e432
 
 
2bbc5f6
 
 
 
 
 
 
 
 
 
2067800
 
 
2bbc5f6
b019cc7
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e432
b019cc7
 
8b5e432
2bbc5f6
8b5e432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067800
 
 
 
 
 
 
8b5e432
6d117d1
b019cc7
 
 
 
 
 
8b5e432
 
2067800
b019cc7
2067800
 
 
 
 
 
 
 
b019cc7
2067800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b019cc7
2067800
 
 
 
 
 
 
 
 
 
 
8b5e432
 
b019cc7
 
6d117d1
 
2067800
 
 
 
 
 
8b5e432
2067800
 
8b5e432
b019cc7
 
 
 
 
 
8b5e432
 
 
6d117d1
8b5e432
 
b019cc7
 
 
 
 
 
 
8b5e432
b019cc7
8b5e432
b019cc7
 
8b5e432
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import torch
import base64
import json
import numpy as np
from PIL import Image
from openai import OpenAI
from demo.model_utils import *
from pydantic import BaseModel

questions = json.load(open("evaluate/new_test.json", "r"))
judge_client = OpenAI(api_key=os.environ["GEMINI_HCI_API_KEY"], 
                            base_url="https://generativelanguage.googleapis.com/v1beta/openai/")

class Judge_Result(BaseModel):
    result: int

def set_seed(model_seed = 70):
    torch.manual_seed(model_seed)
    torch.cuda.manual_seed(model_seed) if torch.cuda.is_available() else None

def clean():
    # Empty CUDA cache
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()  # Frees inter-process CUDA memory
    
    # Empty MacOS Metal backend (if using Apple Silicon)
    if torch.backends.mps.is_available():
        torch.mps.empty_cache()

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def llm_judge(answer, options, correct_answer):
    completion = judge_client.beta.chat.completions.parse(
        model="gemini-2.5-pro-preview-03-25",
        messages=[
            { "role": "system", "content": "You are a judge that evaluates the correctness of answers to questions. The answer might not be the letter of correct option. You need to judge correctness of the answer, comparing to the options and correct option. Return the correctness in 1: Correct or 0: Incorrect." },
            { "role": "user", "content": f":Options: {options}\nAnswer:{answer},Correct Option: {correct_answer}" },
        ],
        response_format=Judge_Result
    )
    answer = completion.choices[0].message.content
    print(f"Judge Answer: {answer}")
    return json.loads(answer)["result"]
    

def evaluate(model_type, num_eval = 10):
    sum_correct = np.zeros(len(questions))
    RESULTS_ROOT = "./evaluate/results"
    for eval_idx in range(num_eval):
        clean()
        set_seed(np.random.randint(0, 1000))
        model_utils, vl_gpt, tokenizer = None, None, None

        if model_type.split('-')[0] == "Janus":
            model_utils = Janus_Utils()
            vl_gpt, tokenizer = model_utils.init_Janus(model_type.split('-')[-1])

        elif model_type.split('-')[0] == "LLaVA":
            model_utils = LLaVA_Utils()
            version = model_type.split('-')[1]
            vl_gpt, tokenizer = model_utils.init_LLaVA(version=version)
        
        elif model_type.split('-')[0] == "ChartGemma":
            model_utils = ChartGemma_Utils()
            vl_gpt, tokenizer = model_utils.init_ChartGemma()
        
        elif model_type.split('-')[0] == "GPT":
            client = OpenAI(api_key=os.environ["OPENAI_HCI_API_KEY"])
        
        elif model_type.split('-')[0] == "Gemini":
            client = OpenAI(api_key=os.environ["GEMINI_HCI_API_KEY"], 
                            base_url="https://generativelanguage.googleapis.com/v1beta/openai/")

        for question_idx, question in enumerate(questions):
            chart_type = question["type"]
            q = question["question"]
            img_path = question["img_path"]
            options = question.get("options", None)
            correct_answer = question.get("correct_answer", None)

            image = np.array(Image.open(img_path).convert("RGB"))

            
            input_text = f"Options: {options}\nQuestion: {q}\n"
            if model_type.split('-')[0] == "GPT":
                base64_image = encode_image(img_path)
                completion = client.chat.completions.create(
                    model="gpt-4o",
                    messages=[
                        {
                            "role": "user",
                            "content": [
                                { "type": "text", "text": f"{input_text}" },
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:image/jpeg;base64,{base64_image}",
                                    },
                                },
                            ],
                        }
                    ],
                )
                answer = completion.choices[0].message.content

            elif model_type.split('-')[0] == "Gemini":
                base64_image = encode_image(img_path)
                completion = client.chat.completions.create(
                    model="gemini-2.0-flash",
                    messages=[
                        {
                            "role": "user",
                            "content": [
                                { "type": "text", "text": f"{input_text}" },
                                {
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:image/jpeg;base64,{base64_image}",
                                    },
                                },
                            ],
                        }
                    ],
                )
                answer = completion.choices[0].message.content

            else:
                
                prepare_inputs = model_utils.prepare_inputs(input_text, image)
                temperature = 0.1
                top_p = 0.95

                if model_type.split('-')[0] == "Janus":
                    inputs_embeds = model_utils.generate_inputs_embeddings(prepare_inputs)
                    outputs = model_utils.generate_outputs(inputs_embeds, prepare_inputs, temperature, top_p)
                else:
                    outputs = model_utils.generate_outputs(prepare_inputs, temperature, top_p)

                sequences = outputs.sequences.cpu().tolist()
                answer = tokenizer.decode(sequences[0], skip_special_tokens=True)

            # Judge the answer
            result_judge = llm_judge(answer, options, correct_answer)
            sum_correct[question_idx] += 1 if result_judge else 0
            print(f"Model: {model_type}, Question: {question_idx + 1}, Answer: {answer}, Correct: {result_judge}")

            # Save the results
            FILES_ROOT = f"{RESULTS_ROOT}/{model_type}/{eval_idx}"
            os.makedirs(FILES_ROOT, exist_ok=True)

            with open(f"{FILES_ROOT}/Q{question_idx + 1}-{chart_type}.txt", "w") as f:
                f.write(answer)
                f.close()
    accuracy = sum_correct / num_eval
    print(f"Model: {model_type}, Accuracy: {accuracy}")
    with open(f"{RESULTS_ROOT}/{model_type}/accuracy.txt", "w") as f:
        for question_idx, question in enumerate(questions):
            chart_type = question["type"]
            f.write(f"Chart Type: {chart_type}, Accuracy: {accuracy[question_idx]}\n")
        f.close()

if __name__ == '__main__':

    # models = ["Janus-Pro-1B", "ChartGemma", "GPT-4o", "Gemini-2.0-flash", "Janus-Pro-7B", "LLaVA-1.5-7B"]
    models = ["LLaVA-1.5-7B", "Gemini-2.0-flash", "Janus-Pro-7B", ]

    for model_type in models:
        evaluate(model_type=model_type, num_eval=10)