File size: 39,518 Bytes
6c3262d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
# original https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py

import itertools
import logging
import os
import zlib

from typing import BinaryIO, Iterable, List, NamedTuple, Optional, Tuple, Union

import ctranslate2
import numpy as np
import tokenizers

from faster_whisper.audio import decode_audio
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_logger
from faster_whisper.vad import (
    SpeechTimestampsMap,
    VadOptions,
    collect_chunks,
    get_speech_timestamps,
)


class Word(NamedTuple):
    start: float
    end: float
    word: str
    probability: float


class Segment(NamedTuple):
    id: int
    seek: int
    start: float
    end: float
    text: str
    tokens: List[int]
    temperature: float
    avg_logprob: float
    compression_ratio: float
    no_speech_prob: float
    words: Optional[List[Word]]


class TranscriptionOptions(NamedTuple):
    beam_size: int
    best_of: int
    patience: float
    length_penalty: float
    repetition_penalty: float
    no_repeat_ngram_size: int
    log_prob_threshold: Optional[float]
    no_speech_threshold: Optional[float]
    compression_ratio_threshold: Optional[float]
    condition_on_previous_text: bool
    prompt_reset_on_temperature: float
    temperatures: List[float]
    initial_prompt: Optional[Union[str, Iterable[int]]]
    prefix: Optional[str]
    suppress_blank: bool
    suppress_tokens: Optional[List[int]]
    without_timestamps: bool
    max_initial_timestamp: float
    word_timestamps: bool
    prepend_punctuations: str
    append_punctuations: str


class TranscriptionInfo(NamedTuple):
    language: str
    language_probability: float
    duration: float
    duration_after_vad: float
    all_language_probs: Optional[List[Tuple[str, float]]]
    transcription_options: TranscriptionOptions
    vad_options: VadOptions


class WhisperModel:
    def __init__(
        self,
        model_size_or_path: str,
        device: str = "auto",
        device_index: Union[int, List[int]] = 0,
        compute_type: str = "default",
        cpu_threads: int = 0,
        num_workers: int = 1,
        download_root: Optional[str] = None,
        local_files_only: bool = False,
    ):
        """Initializes the Whisper model.

        Args:
          model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
            small, small.en, medium, medium.en, large-v1, large-v2, or large), a path to a converted
            model directory, or a CTranslate2-converted Whisper model ID from the Hugging Face Hub.
            When a size or a model ID is configured, the converted model is downloaded
            from the Hugging Face Hub.
          device: Device to use for computation ("cpu", "cuda", "auto").
          device_index: Device ID to use.
            The model can also be loaded on multiple GPUs by passing a list of IDs
            (e.g. [0, 1, 2, 3]). In that case, multiple transcriptions can run in parallel
            when transcribe() is called from multiple Python threads (see also num_workers).
          compute_type: Type to use for computation.
            See https://opennmt.net/CTranslate2/quantization.html.
          cpu_threads: Number of threads to use when running on CPU (4 by default).
            A non zero value overrides the OMP_NUM_THREADS environment variable.
          num_workers: When transcribe() is called from multiple Python threads,
            having multiple workers enables true parallelism when running the model
            (concurrent calls to self.model.generate() will run in parallel).
            This can improve the global throughput at the cost of increased memory usage.
          download_root: Directory where the models should be saved. If not set, the models
            are saved in the standard Hugging Face cache directory.
          local_files_only:  If True, avoid downloading the file and return the path to the
            local cached file if it exists.
        """
        self.logger = get_logger()

        if os.path.isdir(model_size_or_path):
            model_path = model_size_or_path
        else:
            model_path = download_model(
                model_size_or_path,
                local_files_only=local_files_only,
                cache_dir=download_root,
            )

        self.model = ctranslate2.models.Whisper(
            model_path,
            device=device,
            device_index=device_index,
            compute_type=compute_type,
            intra_threads=cpu_threads,
            inter_threads=num_workers,
        )

        tokenizer_file = os.path.join(model_path, "tokenizer.json")
        if os.path.isfile(tokenizer_file):
            self.hf_tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
        else:
            self.hf_tokenizer = tokenizers.Tokenizer.from_pretrained(
                "openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
            )

        self.feature_extractor = FeatureExtractor()
        self.num_samples_per_token = self.feature_extractor.hop_length * 2
        self.frames_per_second = (
            self.feature_extractor.sampling_rate // self.feature_extractor.hop_length
        )
        self.tokens_per_second = (
            self.feature_extractor.sampling_rate // self.num_samples_per_token
        )
        self.input_stride = 2
        self.time_precision = 0.02
        self.max_length = 448

    @property
    def supported_languages(self) -> List[str]:
        """The languages supported by the model."""
        return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]

    def transcribe(
        self,
        audio: Union[str, BinaryIO, np.ndarray],
        language: Optional[str] = None,
        task: str = "transcribe",
        beam_size: int = 5,
        best_of: int = 5,
        patience: float = 1,
        length_penalty: float = 1,
        repetition_penalty: float = 1,
        no_repeat_ngram_size: int = 0,
        temperature: Union[float, List[float], Tuple[float, ...]] = [
            0.0,
            0.2,
            0.4,
            0.6,
            0.8,
            1.0,
        ],
        compression_ratio_threshold: Optional[float] = 2.4,
        log_prob_threshold: Optional[float] = -1.0,
        no_speech_threshold: Optional[float] = 0.6,
        condition_on_previous_text: bool = True,
        prompt_reset_on_temperature: float = 0.5,
        initial_prompt: Optional[Union[str, Iterable[int]]] = None,
        prefix: Optional[str] = None,
        suppress_blank: bool = True,
        suppress_tokens: Optional[List[int]] = [-1],
        without_timestamps: bool = False,
        max_initial_timestamp: float = 1.0,
        word_timestamps: bool = False,
        prepend_punctuations: str = "\"'“¿([{-",
        append_punctuations: str = "\"'.。,,!!??::”)]}、",
        vad_filter: bool = False,
        vad_parameters: Optional[Union[dict, VadOptions]] = None,
    ) -> Tuple[Iterable[Segment], TranscriptionInfo]:
        """Transcribes an input file.

        Arguments:
          audio: Path to the input file (or a file-like object), or the audio waveform.
          language: The language spoken in the audio. It should be a language code such
            as "en" or "fr". If not set, the language will be detected in the first 30 seconds
            of audio.
          task: Task to execute (transcribe or translate).
          beam_size: Beam size to use for decoding.
          best_of: Number of candidates when sampling with non-zero temperature.
          patience: Beam search patience factor.
          length_penalty: Exponential length penalty constant.
          repetition_penalty: Penalty applied to the score of previously generated tokens
            (set > 1 to penalize).
          no_repeat_ngram_size: Prevent repetitions of ngrams with this size (set 0 to disable).
          temperature: Temperature for sampling. It can be a tuple of temperatures,
            which will be successively used upon failures according to either
            `compression_ratio_threshold` or `log_prob_threshold`.
          compression_ratio_threshold: If the gzip compression ratio is above this value,
            treat as failed.
          log_prob_threshold: If the average log probability over sampled tokens is
            below this value, treat as failed.
          no_speech_threshold: If the no_speech probability is higher than this value AND
            the average log probability over sampled tokens is below `log_prob_threshold`,
            consider the segment as silent.
          condition_on_previous_text: If True, the previous output of the model is provided
            as a prompt for the next window; disabling may make the text inconsistent across
            windows, but the model becomes less prone to getting stuck in a failure loop,
            such as repetition looping or timestamps going out of sync.
          prompt_reset_on_temperature: Resets prompt if temperature is above this value.
            Arg has effect only if condition_on_previous_text is True.
          initial_prompt: Optional text string or iterable of token ids to provide as a
            prompt for the first window.
          prefix: Optional text to provide as a prefix for the first window.
          suppress_blank: Suppress blank outputs at the beginning of the sampling.
          suppress_tokens: List of token IDs to suppress. -1 will suppress a default set
            of symbols as defined in the model config.json file.
          without_timestamps: Only sample text tokens.
          max_initial_timestamp: The initial timestamp cannot be later than this.
          word_timestamps: Extract word-level timestamps using the cross-attention pattern
            and dynamic time warping, and include the timestamps for each word in each segment.
          prepend_punctuations: If word_timestamps is True, merge these punctuation symbols
            with the next word
          append_punctuations: If word_timestamps is True, merge these punctuation symbols
            with the previous word
          vad_filter: Enable the voice activity detection (VAD) to filter out parts of the audio
            without speech. This step is using the Silero VAD model
            https://github.com/snakers4/silero-vad.
          vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
            parameters and default values in the class `VadOptions`).

        Returns:
          A tuple with:

            - a generator over transcribed segments
            - an instance of TranscriptionInfo
        """
        sampling_rate = self.feature_extractor.sampling_rate

        if not isinstance(audio, np.ndarray):
            audio = decode_audio(audio, sampling_rate=sampling_rate)

        duration = audio.shape[0] / sampling_rate
        duration_after_vad = duration

        self.logger.info(
            "Processing audio with duration %s", format_timestamp(duration)
        )

        if vad_filter:
            if vad_parameters is None:
                vad_parameters = VadOptions()
            elif isinstance(vad_parameters, dict):
                vad_parameters = VadOptions(**vad_parameters)
            speech_chunks = get_speech_timestamps(audio, vad_parameters)
            audio = collect_chunks(audio, speech_chunks)
            duration_after_vad = audio.shape[0] / sampling_rate

            self.logger.info(
                "VAD filter removed %s of audio",
                format_timestamp(duration - duration_after_vad),
            )

            if self.logger.isEnabledFor(logging.DEBUG):
                self.logger.debug(
                    "VAD filter kept the following audio segments: %s",
                    ", ".join(
                        "[%s -> %s]"
                        % (
                            format_timestamp(chunk["start"] / sampling_rate),
                            format_timestamp(chunk["end"] / sampling_rate),
                        )
                        for chunk in speech_chunks
                    ),
                )

        else:
            speech_chunks = None

        features = self.feature_extractor(audio)

        encoder_output = None
        all_language_probs = None

        if language is None:
            if not self.model.is_multilingual:
                language = "en"
                language_probability = 1
            else:
                segment = features[:, : self.feature_extractor.nb_max_frames]
                encoder_output = self.encode(segment)
                # results is a list of tuple[str, float] with language names and
                # probabilities.
                results = self.model.detect_language(encoder_output)[0]
                # Parse language names to strip out markers
                all_language_probs = [(token[2:-2], prob) for (token, prob) in results]
                # Get top language token and probability
                language, language_probability = all_language_probs[0]

                self.logger.info(
                    "Detected language '%s' with probability %.2f",
                    language,
                    language_probability,
                )
        else:
            if not self.model.is_multilingual and language != "en":
                self.logger.warning(
                    "The current model is English-only but the language parameter is set to '%s'; "
                    "using 'en' instead." % language
                )
                language = "en"

            language_probability = 1

        tokenizer = Tokenizer(
            self.hf_tokenizer,
            self.model.is_multilingual,
            task=task,
            language=language,
        )

        options = TranscriptionOptions(
            beam_size=beam_size,
            best_of=best_of,
            patience=patience,
            length_penalty=length_penalty,
            repetition_penalty=repetition_penalty,
            no_repeat_ngram_size=no_repeat_ngram_size,
            log_prob_threshold=log_prob_threshold,
            no_speech_threshold=no_speech_threshold,
            compression_ratio_threshold=compression_ratio_threshold,
            condition_on_previous_text=condition_on_previous_text,
            prompt_reset_on_temperature=prompt_reset_on_temperature,
            temperatures=(
                temperature if isinstance(temperature, (list, tuple)) else [temperature]
            ),
            initial_prompt=initial_prompt,
            prefix=prefix,
            suppress_blank=suppress_blank,
            suppress_tokens=get_suppressed_tokens(tokenizer, suppress_tokens),
            without_timestamps=without_timestamps,
            max_initial_timestamp=max_initial_timestamp,
            word_timestamps=word_timestamps,
            prepend_punctuations=prepend_punctuations,
            append_punctuations=append_punctuations,
        )

        segments = self.generate_segments(features, tokenizer, options, encoder_output)

        if speech_chunks:
            segments = restore_speech_timestamps(segments, speech_chunks, sampling_rate)

        info = TranscriptionInfo(
            language=language,
            language_probability=language_probability,
            duration=duration,
            duration_after_vad=duration_after_vad,
            transcription_options=options,
            vad_options=vad_parameters,
            all_language_probs=all_language_probs,
        )

        return segments, info

    def generate_segments(
        self,
        features: np.ndarray,
        tokenizer: Tokenizer,
        options: TranscriptionOptions,
        encoder_output: Optional[ctranslate2.StorageView] = None,
    ) -> Iterable[Segment]:
        content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
        idx = 0
        seek = 0
        all_tokens = []
        prompt_reset_since = 0

        if options.initial_prompt is not None:
            if isinstance(options.initial_prompt, str):
                initial_prompt = " " + options.initial_prompt.strip()
                initial_prompt_tokens = tokenizer.encode(initial_prompt)
                all_tokens.extend(initial_prompt_tokens)
            else:
                all_tokens.extend(options.initial_prompt)

        last_speech_timestamp = 0.0
        all_segments = []
        while seek < content_frames:
            time_offset = seek * self.feature_extractor.time_per_frame
            segment = features[:, seek : seek + self.feature_extractor.nb_max_frames]
            segment_size = min(
                self.feature_extractor.nb_max_frames, content_frames - seek
            )
            segment_duration = segment_size * self.feature_extractor.time_per_frame

            if self.logger.isEnabledFor(logging.DEBUG):
                self.logger.debug(
                    "Processing segment at %s", format_timestamp(time_offset)
                )

            previous_tokens = all_tokens[prompt_reset_since:]
            prompt = self.get_prompt(
                tokenizer,
                previous_tokens,
                without_timestamps=options.without_timestamps,
                prefix=options.prefix if seek == 0 else None,
            )

            if seek > 0 or encoder_output is None:
                encoder_output = self.encode(segment)

            (
                result,
                avg_logprob,
                temperature,
                compression_ratio,
            ) = self.generate_with_fallback(encoder_output, prompt, tokenizer, options)

            if options.no_speech_threshold is not None:
                # no voice activity check
                should_skip = result.no_speech_prob > options.no_speech_threshold

                if (
                    options.log_prob_threshold is not None
                    and avg_logprob > options.log_prob_threshold
                ):
                    # don't skip if the logprob is high enough, despite the no_speech_prob
                    should_skip = False

                if should_skip:
                    self.logger.debug(
                        "No speech threshold is met (%f > %f)",
                        result.no_speech_prob,
                        options.no_speech_threshold,
                    )

                    # fast-forward to the next segment boundary
                    seek += segment_size
                    continue

            tokens = result.sequences_ids[0]

            previous_seek = seek
            current_segments = []

            single_timestamp_ending = (
                len(tokens) >= 2
                and tokens[-2] < tokenizer.timestamp_begin
                and tokens[-1] >= tokenizer.timestamp_begin
            )

            consecutive_timestamps = [
                i
                for i in range(len(tokens))
                if i > 0
                and tokens[i] >= tokenizer.timestamp_begin
                and tokens[i - 1] >= tokenizer.timestamp_begin
            ]

            if len(consecutive_timestamps) > 0:
                slices = list(consecutive_timestamps)
                if single_timestamp_ending:
                    slices.append(len(tokens))

                last_slice = 0
                for current_slice in slices:
                    sliced_tokens = tokens[last_slice:current_slice]
                    start_timestamp_position = (
                        sliced_tokens[0] - tokenizer.timestamp_begin
                    )
                    end_timestamp_position = (
                        sliced_tokens[-1] - tokenizer.timestamp_begin
                    )
                    start_time = (
                        time_offset + start_timestamp_position * self.time_precision
                    )
                    end_time = (
                        time_offset + end_timestamp_position * self.time_precision
                    )

                    current_segments.append(
                        dict(
                            seek=seek,
                            start=start_time,
                            end=end_time,
                            tokens=sliced_tokens,
                        )
                    )
                    last_slice = current_slice

                if single_timestamp_ending:
                    # single timestamp at the end means no speech after the last timestamp.
                    seek += segment_size
                else:
                    # otherwise, ignore the unfinished segment and seek to the last timestamp
                    last_timestamp_position = (
                        tokens[last_slice - 1] - tokenizer.timestamp_begin
                    )
                    seek += last_timestamp_position * self.input_stride

            else:
                duration = segment_duration
                timestamps = [
                    token for token in tokens if token >= tokenizer.timestamp_begin
                ]
                if len(timestamps) > 0 and timestamps[-1] != tokenizer.timestamp_begin:
                    last_timestamp_position = timestamps[-1] - tokenizer.timestamp_begin
                    duration = last_timestamp_position * self.time_precision

                current_segments.append(
                    dict(
                        seek=seek,
                        start=time_offset,
                        end=time_offset + duration,
                        tokens=tokens,
                    )
                )

                seek += segment_size

            if options.word_timestamps:
                self.add_word_timestamps(
                    current_segments,
                    tokenizer,
                    encoder_output,
                    segment_size,
                    options.prepend_punctuations,
                    options.append_punctuations,
                    last_speech_timestamp=last_speech_timestamp,
                )

                word_end_timestamps = [
                    w["end"] for s in current_segments for w in s["words"]
                ]
                if len(word_end_timestamps) > 0:
                    last_speech_timestamp = word_end_timestamps[-1]
                if not single_timestamp_ending and len(word_end_timestamps) > 0:
                    seek_shift = round(
                        (word_end_timestamps[-1] - time_offset) * self.frames_per_second
                    )

                    if seek_shift > 0:
                        seek = previous_seek + seek_shift

            for segment in current_segments:
                tokens = segment["tokens"]
                text = tokenizer.decode(tokens)

                if segment["start"] == segment["end"] or not text.strip():
                    continue

                all_tokens.extend(tokens)
                idx += 1

                all_segments.append(Segment(
                    id=idx,
                    seek=seek,
                    start=segment["start"],
                    end=segment["end"],
                    text=text,
                    tokens=tokens,
                    temperature=temperature,
                    avg_logprob=avg_logprob,
                    compression_ratio=compression_ratio,
                    no_speech_prob=result.no_speech_prob,
                    words=(
                        [Word(**word) for word in segment["words"]]
                        if options.word_timestamps
                        else None
                        ),
                ))

            if (
                not options.condition_on_previous_text
                or temperature > options.prompt_reset_on_temperature
            ):
                if options.condition_on_previous_text:
                    self.logger.debug(
                        "Reset prompt. prompt_reset_on_temperature threshold is met %f > %f",
                        temperature,
                        options.prompt_reset_on_temperature,
                    )

                prompt_reset_since = len(all_tokens)
        return all_segments

    def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
        # When the model is running on multiple GPUs, the encoder output should be moved
        # to the CPU since we don't know which GPU will handle the next job.
        to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1

        features = np.expand_dims(features, 0)
        features = get_ctranslate2_storage(features)

        return self.model.encode(features, to_cpu=to_cpu)

    def generate_with_fallback(
        self,
        encoder_output: ctranslate2.StorageView,
        prompt: List[int],
        tokenizer: Tokenizer,
        options: TranscriptionOptions,
    ) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float, float]:
        decode_result = None
        all_results = []
        below_cr_threshold_results = []

        max_initial_timestamp_index = int(
            round(options.max_initial_timestamp / self.time_precision)
        )

        for temperature in options.temperatures:
            if temperature > 0:
                kwargs = {
                    "beam_size": 1,
                    "num_hypotheses": options.best_of,
                    "sampling_topk": 0,
                    "sampling_temperature": temperature,
                }
            else:
                kwargs = {
                    "beam_size": options.beam_size,
                    "patience": options.patience,
                }

            result = self.model.generate(
                encoder_output,
                [prompt],
                length_penalty=options.length_penalty,
                repetition_penalty=options.repetition_penalty,
                no_repeat_ngram_size=options.no_repeat_ngram_size,
                max_length=self.max_length,
                return_scores=True,
                return_no_speech_prob=True,
                suppress_blank=options.suppress_blank,
                suppress_tokens=options.suppress_tokens,
                max_initial_timestamp_index=max_initial_timestamp_index,
                **kwargs,
            )[0]

            tokens = result.sequences_ids[0]

            # Recover the average log prob from the returned score.
            seq_len = len(tokens)
            cum_logprob = result.scores[0] * (seq_len**options.length_penalty)
            avg_logprob = cum_logprob / (seq_len + 1)

            text = tokenizer.decode(tokens).strip()
            compression_ratio = get_compression_ratio(text)

            decode_result = (
                result,
                avg_logprob,
                temperature,
                compression_ratio,
            )
            all_results.append(decode_result)

            needs_fallback = False

            if options.compression_ratio_threshold is not None:
                if compression_ratio > options.compression_ratio_threshold:
                    needs_fallback = True  # too repetitive

                    self.logger.debug(
                        "Compression ratio threshold is not met with temperature %.1f (%f > %f)",
                        temperature,
                        compression_ratio,
                        options.compression_ratio_threshold,
                    )
                else:
                    below_cr_threshold_results.append(decode_result)

            if (
                options.log_prob_threshold is not None
                and avg_logprob < options.log_prob_threshold
            ):
                needs_fallback = True  # average log probability is too low

                self.logger.debug(
                    "Log probability threshold is not met with temperature %.1f (%f < %f)",
                    temperature,
                    avg_logprob,
                    options.log_prob_threshold,
                )

            if (
                options.no_speech_threshold is not None
                and result.no_speech_prob > options.no_speech_threshold
            ):
                needs_fallback = False  # silence

            if not needs_fallback:
                break
        else:
            # all failed, select the result with the highest average log probability
            decode_result = max(
                below_cr_threshold_results or all_results, key=lambda x: x[1]
            )

        return decode_result

    def get_prompt(
        self,
        tokenizer: Tokenizer,
        previous_tokens: List[int],
        without_timestamps: bool = False,
        prefix: Optional[str] = None,
    ) -> List[int]:
        prompt = []

        if previous_tokens:
            prompt.append(tokenizer.sot_prev)
            prompt.extend(previous_tokens[-(self.max_length // 2 - 1) :])

        prompt.extend(tokenizer.sot_sequence)

        if without_timestamps:
            prompt.append(tokenizer.no_timestamps)

        if prefix:
            prefix_tokens = tokenizer.encode(" " + prefix.strip())
            if len(prefix_tokens) >= self.max_length // 2:
                prefix_tokens = prefix_tokens[: self.max_length // 2 - 1]
            if not without_timestamps:
                prompt.append(tokenizer.timestamp_begin)
            prompt.extend(prefix_tokens)

        return prompt

    def add_word_timestamps(
        self,
        segments: List[dict],
        tokenizer: Tokenizer,
        encoder_output: ctranslate2.StorageView,
        num_frames: int,
        prepend_punctuations: str,
        append_punctuations: str,
        last_speech_timestamp: float,
    ) -> None:
        if len(segments) == 0:
            return

        text_tokens_per_segment = [
            [token for token in segment["tokens"] if token < tokenizer.eot]
            for segment in segments
        ]

        text_tokens = list(itertools.chain.from_iterable(text_tokens_per_segment))
        alignment = self.find_alignment(
            tokenizer, text_tokens, encoder_output, num_frames
        )
        word_durations = np.array([word["end"] - word["start"] for word in alignment])
        word_durations = word_durations[word_durations.nonzero()]
        median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
        max_duration = median_duration * 2

        # hack: truncate long words at sentence boundaries.
        # a better segmentation algorithm based on VAD should be able to replace this.
        if len(word_durations) > 0:
            sentence_end_marks = ".。!!??"
            # ensure words at sentence boundaries
            # are not longer than twice the median word duration.
            for i in range(1, len(alignment)):
                if alignment[i]["end"] - alignment[i]["start"] > max_duration:
                    if alignment[i]["word"] in sentence_end_marks:
                        alignment[i]["end"] = alignment[i]["start"] + max_duration
                    elif alignment[i - 1]["word"] in sentence_end_marks:
                        alignment[i]["start"] = alignment[i]["end"] - max_duration

        merge_punctuations(alignment, prepend_punctuations, append_punctuations)

        time_offset = (
            segments[0]["seek"]
            * self.feature_extractor.hop_length
            / self.feature_extractor.sampling_rate
        )

        word_index = 0

        for segment, text_tokens in zip(segments, text_tokens_per_segment):
            saved_tokens = 0
            words = []

            while word_index < len(alignment) and saved_tokens < len(text_tokens):
                timing = alignment[word_index]

                if timing["word"]:
                    words.append(
                        dict(
                            word=timing["word"],
                            start=round(time_offset + timing["start"], 2),
                            end=round(time_offset + timing["end"], 2),
                            probability=timing["probability"],
                        )
                    )

                saved_tokens += len(timing["tokens"])
                word_index += 1

            # hack: truncate long words at segment boundaries.
            # a better segmentation algorithm based on VAD should be able to replace this.
            if len(words) > 0:
                # ensure the first and second word after a pause is not longer than
                # twice the median word duration.
                if words[0]["end"] - last_speech_timestamp > median_duration * 4 and (
                    words[0]["end"] - words[0]["start"] > max_duration
                    or (
                        len(words) > 1
                        and words[1]["end"] - words[0]["start"] > max_duration * 2
                    )
                ):
                    if (
                        len(words) > 1
                        and words[1]["end"] - words[1]["start"] > max_duration
                    ):
                        boundary = max(
                            words[1]["end"] / 2, words[1]["end"] - max_duration
                        )
                        words[0]["end"] = words[1]["start"] = boundary
                    words[0]["start"] = max(0, words[0]["end"] - max_duration)

                # prefer the segment-level start timestamp if the first word is too long.
                if (
                    segment["start"] < words[0]["end"]
                    and segment["start"] - 0.5 > words[0]["start"]
                ):
                    words[0]["start"] = max(
                        0, min(words[0]["end"] - median_duration, segment["start"])
                    )
                else:
                    segment["start"] = words[0]["start"]

                # prefer the segment-level end timestamp if the last word is too long.
                if (
                    segment["end"] > words[-1]["start"]
                    and segment["end"] + 0.5 < words[-1]["end"]
                ):
                    words[-1]["end"] = max(
                        words[-1]["start"] + median_duration, segment["end"]
                    )
                else:
                    segment["end"] = words[-1]["end"]

                last_speech_timestamp = segment["end"]

            segment["words"] = words

    def find_alignment(
        self,
        tokenizer: Tokenizer,
        text_tokens: List[int],
        encoder_output: ctranslate2.StorageView,
        num_frames: int,
        median_filter_width: int = 7,
    ) -> List[dict]:
        if len(text_tokens) == 0:
            return []

        result = self.model.align(
            encoder_output,
            tokenizer.sot_sequence,
            [text_tokens],
            num_frames,
            median_filter_width=median_filter_width,
        )[0]

        text_token_probs = result.text_token_probs

        alignments = result.alignments
        text_indices = np.array([pair[0] for pair in alignments])
        time_indices = np.array([pair[1] for pair in alignments])

        words, word_tokens = tokenizer.split_to_word_tokens(
            text_tokens + [tokenizer.eot]
        )
        word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
        if len(word_boundaries) <= 1:
            return []

        jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
        jump_times = time_indices[jumps] / self.tokens_per_second
        start_times = jump_times[word_boundaries[:-1]]
        end_times = jump_times[word_boundaries[1:]]
        word_probabilities = [
            np.mean(text_token_probs[i:j])
            for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
        ]

        return [
            dict(
                word=word, tokens=tokens, start=start, end=end, probability=probability
            )
            for word, tokens, start, end, probability in zip(
                words, word_tokens, start_times, end_times, word_probabilities
            )
        ]
    
    def destroy(self):
        del self.model


def restore_speech_timestamps(
    segments: Iterable[Segment],
    speech_chunks: List[dict],
    sampling_rate: int,
) -> Iterable[Segment]:
    ts_map = SpeechTimestampsMap(speech_chunks, sampling_rate)

    for segment in segments:
        if segment.words:
            words = []
            for word in segment.words:
                # Ensure the word start and end times are resolved to the same chunk.
                middle = (word.start + word.end) / 2
                chunk_index = ts_map.get_chunk_index(middle)
                word = word._replace(
                    start=ts_map.get_original_time(word.start, chunk_index),
                    end=ts_map.get_original_time(word.end, chunk_index),
                )
                words.append(word)

            segment = segment._replace(
                start=words[0].start,
                end=words[-1].end,
                words=words,
            )

        else:
            segment = segment._replace(
                start=ts_map.get_original_time(segment.start),
                end=ts_map.get_original_time(segment.end),
            )

    return segments


def get_ctranslate2_storage(segment: np.ndarray) -> ctranslate2.StorageView:
    segment = np.ascontiguousarray(segment)
    segment = ctranslate2.StorageView.from_array(segment)
    return segment


def get_compression_ratio(text: str) -> float:
    text_bytes = text.encode("utf-8")
    return len(text_bytes) / len(zlib.compress(text_bytes))


def get_suppressed_tokens(
    tokenizer: Tokenizer,
    suppress_tokens: Optional[List[int]],
) -> Optional[List[int]]:
    if not suppress_tokens or -1 in suppress_tokens:
        return suppress_tokens

    suppress_tokens = list(suppress_tokens)

    # Ensure the following special tokens are suppressed when the user does
    # not use the default set (-1).
    suppress_tokens.extend(
        [
            tokenizer.transcribe,
            tokenizer.translate,
            tokenizer.sot,
            tokenizer.sot_prev,
            tokenizer.sot_lm,
        ]
    )

    return sorted(set(suppress_tokens))


def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:
    # merge prepended punctuations
    i = len(alignment) - 2
    j = len(alignment) - 1
    while i >= 0:
        previous = alignment[i]
        following = alignment[j]
        if previous["word"].startswith(" ") and previous["word"].strip() in prepended:
            # prepend it to the following word
            following["word"] = previous["word"] + following["word"]
            following["tokens"] = previous["tokens"] + following["tokens"]
            previous["word"] = ""
            previous["tokens"] = []
        else:
            j = i
        i -= 1

    # merge appended punctuations
    i = 0
    j = 1
    while j < len(alignment):
        previous = alignment[i]
        following = alignment[j]
        if not previous["word"].endswith(" ") and following["word"] in appended:
            # append it to the previous word
            previous["word"] = previous["word"] + following["word"]
            previous["tokens"] = previous["tokens"] + following["tokens"]
            following["word"] = ""
            following["tokens"] = []
        else:
            i = j
        j += 1