Spaces:
Paused
Paused
File size: 13,431 Bytes
bd36f24 201054b bd36f24 16388cf 201054b 28cd485 201054b 855f306 201054b e3f7cd8 201054b 7cc82ad 16388cf 201054b 855f306 201054b 9dcd6a2 201054b 9dcd6a2 201054b 9dcd6a2 201054b e3f7cd8 ea46c22 e3f7cd8 ea46c22 28cd485 7cc82ad f1e930a 7cc82ad ea46c22 7cc82ad 28cd485 201054b 16388cf 201054b 7cc82ad 201054b 7cc82ad f1e930a 201054b f1e930a bd36f24 e3f7cd8 7cc82ad 9dcd6a2 7cc82ad 9dcd6a2 e3f7cd8 9dcd6a2 ea46c22 e3f7cd8 3a0cae9 16388cf 3a0cae9 bd36f24 16388cf e3f7cd8 5d9af51 e3f7cd8 16388cf e3f7cd8 28cd485 3a0cae9 16388cf 7cc82ad 201054b 855f306 bd36f24 7cc82ad 9dcd6a2 7cc82ad 9dcd6a2 e3f7cd8 9dcd6a2 7cc82ad 16388cf 7cc82ad 16388cf 7cc82ad 201054b 7cc82ad 9dcd6a2 201054b bd36f24 16388cf 28cd485 16388cf bd36f24 16388cf bd36f24 16388cf e3f7cd8 16388cf 3a0cae9 201054b 28cd485 bd36f24 28cd485 201054b 28cd485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import time
import json
from pathlib import Path
from typing import Optional
import logging
logging.basicConfig(level = logging.INFO)
import numpy as np
import torch
from transformers import AutoTokenizer
import re
import tensorrt_llm
from tensorrt_llm.logger import logger
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelRunner
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
def read_model_name(engine_dir: str):
engine_version = tensorrt_llm.runtime.engine.get_engine_version(engine_dir)
with open(Path(engine_dir) / "config.json", 'r') as f:
config = json.load(f)
if engine_version is None:
return config['builder_config']['name']
return config['pretrained_config']['architecture']
def throttle_generator(generator, stream_interval):
for i, out in enumerate(generator):
if not i % stream_interval:
yield out
if i % stream_interval:
yield out
def load_tokenizer(tokenizer_dir: Optional[str] = None,
vocab_file: Optional[str] = None,
model_name: str = 'gpt',
tokenizer_type: Optional[str] = None):
if vocab_file is None:
use_fast = True
if tokenizer_type is not None and tokenizer_type == "llama":
use_fast = False
# Should set both padding_side and truncation_side to be 'left'
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
legacy=False,
padding_side='left',
truncation_side='left',
trust_remote_code=True,
tokenizer_type=tokenizer_type,
use_fast=use_fast)
else:
# For gpt-next, directly load from tokenizer.model
assert model_name == 'gpt'
tokenizer = T5Tokenizer(vocab_file=vocab_file,
padding_side='left',
truncation_side='left')
if model_name == 'qwen':
with open(Path(tokenizer_dir) / "generation_config.json") as f:
gen_config = json.load(f)
chat_format = gen_config['chat_format']
if chat_format == 'raw':
pad_id = gen_config['pad_token_id']
end_id = gen_config['eos_token_id']
elif chat_format == 'chatml':
pad_id = tokenizer.im_end_id
end_id = tokenizer.im_end_id
else:
raise Exception(f"unknown chat format: {chat_format}")
elif model_name == 'glm_10b':
pad_id = tokenizer.pad_token_id
end_id = tokenizer.eop_token_id
else:
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
pad_id = tokenizer.pad_token_id
end_id = tokenizer.eos_token_id
return tokenizer, pad_id, end_id
class TensorRTLLMEngine:
def __init__(self):
pass
def initialize_model(self, engine_dir, tokenizer_dir):
self.log_level = 'error'
self.runtime_rank = tensorrt_llm.mpi_rank()
logger.set_level(self.log_level)
model_name = read_model_name(engine_dir)
self.tokenizer, self.pad_id, self.end_id = load_tokenizer(
tokenizer_dir=tokenizer_dir,
vocab_file=None,
model_name=model_name,
tokenizer_type=None,
)
self.prompt_template = None
self.runner_cls = ModelRunner
self.runner_kwargs = dict(engine_dir=engine_dir,
lora_dir=None,
rank=self.runtime_rank,
debug_mode=False,
lora_ckpt_source='hf')
self.runner = self.runner_cls.from_dir(**self.runner_kwargs)
self.last_prompt = None
self.last_output = None
def parse_input(
self,
input_text=None,
add_special_tokens=True,
max_input_length=923,
pad_id=None,
):
if self.pad_id is None:
self.pad_id = self.tokenizer.pad_token_id
batch_input_ids = []
for curr_text in input_text:
if self.prompt_template is not None:
curr_text = self.prompt_template.format(input_text=curr_text)
input_ids = self.tokenizer.encode(
curr_text,
add_special_tokens=add_special_tokens,
truncation=True,
max_length=max_input_length
)
batch_input_ids.append(input_ids)
batch_input_ids = [
torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
]
return batch_input_ids
def decode_tokens(
self,
output_ids,
input_lengths,
sequence_lengths,
transcription_queue
):
batch_size, num_beams, _ = output_ids.size()
for batch_idx in range(batch_size):
if transcription_queue.qsize() != 0:
return None
inputs = output_ids[batch_idx][0][:input_lengths[batch_idx]].tolist()
input_text = self.tokenizer.decode(inputs)
output = []
for beam in range(num_beams):
if transcription_queue.qsize() != 0:
return None
output_begin = input_lengths[batch_idx]
output_end = sequence_lengths[batch_idx][beam]
outputs = output_ids[batch_idx][beam][
output_begin:output_end].tolist()
output_text = self.tokenizer.decode(outputs)
output.append(output_text)
return output
def format_prompt_qa(self, prompt, conversation_history):
formatted_prompt = ""
for user_prompt, llm_response in conversation_history:
formatted_prompt += f"Instruct: {user_prompt}\nOutput:{llm_response}\n"
return f"{formatted_prompt}Instruct: {prompt}\nOutput:"
def format_prompt_chat(self, prompt, conversation_history):
formatted_prompt = ""
for user_prompt, llm_response in conversation_history:
formatted_prompt += f"Alice: {user_prompt}\nBob:{llm_response}\n"
return f"{formatted_prompt}Alice: {prompt}\nBob:"
def format_prompt_chatml(self, prompt, conversation_history, system_prompt=""):
formatted_prompt = ("<|im_start|>system\n" + system_prompt + "<|im_end|>\n")
for user_prompt, llm_response in conversation_history:
formatted_prompt += f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
formatted_prompt += f"<|im_start|>assistant\n{llm_response}<|im_end|>\n"
formatted_prompt += f"<|im_start|>user\n{prompt}<|im_end|>\n"
return formatted_prompt
def run(
self,
model_path,
tokenizer_path,
transcription_queue=None,
llm_queue=None,
audio_queue=None,
input_text=None,
max_output_len=50,
max_attention_window_size=4096,
num_beams=1,
streaming=False,
streaming_interval=4,
debug=False,
):
self.initialize_model(
model_path,
tokenizer_path,
)
logging.info("[LLM INFO:] Loaded LLM TensorRT Engine.")
conversation_history = {}
while True:
# Get the last transcription output from the queue
transcription_output = transcription_queue.get()
if transcription_queue.qsize() != 0:
continue
if transcription_output["uid"] not in conversation_history:
conversation_history[transcription_output["uid"]] = []
prompt = transcription_output['prompt'].strip()
# if prompt is same but EOS is True, we need that to send outputs to websockets
if self.last_prompt == prompt:
if self.last_output is not None and transcription_output["eos"]:
self.eos = transcription_output["eos"]
llm_queue.put({
"uid": transcription_output["uid"],
"llm_output": self.last_output,
"eos": self.eos,
"latency": self.infer_time
})
audio_queue.put({"llm_output": self.last_output, "eos": self.eos})
conversation_history[transcription_output["uid"]].append(
(transcription_output['prompt'].strip(), self.last_output[0].strip())
)
continue
# input_text=[self.format_prompt_qa(prompt, conversation_history[transcription_output["uid"]])]
input_text=[self.format_prompt_chatml(prompt, conversation_history[transcription_output["uid"]], system_prompt="You are Dolphin, a helpful AI assistant")]
self.eos = transcription_output["eos"]
batch_input_ids = self.parse_input(
input_text=input_text,
add_special_tokens=True,
max_input_length=923,
pad_id=None,
)
input_lengths = [x.size(0) for x in batch_input_ids]
logging.info(f"[LLM INFO:] Running LLM Inference with WhisperLive prompt: {prompt}, eos: {self.eos}")
start = time.time()
with torch.no_grad():
outputs = self.runner.generate(
batch_input_ids,
max_new_tokens=max_output_len,
max_attention_window_size=max_attention_window_size,
end_id=self.end_id,
pad_id=self.pad_id,
temperature=1.0,
top_k=1,
top_p=0.0,
num_beams=num_beams,
length_penalty=1.0,
repetition_penalty=1.0,
stop_words_list=None,
bad_words_list=None,
lora_uids=None,
prompt_table_path=None,
prompt_tasks=None,
streaming=streaming,
output_sequence_lengths=True,
return_dict=True)
torch.cuda.synchronize()
if streaming:
for curr_outputs in throttle_generator(outputs, streaming_interval):
output_ids = curr_outputs['output_ids']
sequence_lengths = curr_outputs['sequence_lengths']
output = self.decode_tokens(
output_ids,
input_lengths,
sequence_lengths,
transcription_queue
)
if output is None:
break
# Interrupted by transcription queue
if output is None:
continue
else:
output_ids = outputs['output_ids']
sequence_lengths = outputs['sequence_lengths']
context_logits = None
generation_logits = None
if self.runner.gather_context_logits:
context_logits = outputs['context_logits']
if self.runner.gather_generation_logits:
generation_logits = outputs['generation_logits']
output = self.decode_tokens(
output_ids,
input_lengths,
sequence_lengths,
transcription_queue
)
self.infer_time = time.time() - start
# if self.eos:
if output is not None:
output[0] = clean_llm_output(output[0])
self.last_output = output
self.last_prompt = prompt
llm_queue.put({
"uid": transcription_output["uid"],
"llm_output": output,
"eos": self.eos,
"latency": self.infer_time
})
audio_queue.put({"llm_output": output, "eos": self.eos})
logging.info(f"[LLM INFO:] Output: {output[0]}\nLLM inference done in {self.infer_time} ms\n\n")
if self.eos:
conversation_history[transcription_output["uid"]].append(
(transcription_output['prompt'].strip(), output[0].strip())
)
self.last_prompt = None
self.last_output = None
def clean_llm_output(output):
output = output.replace("\n\nDolphin\n\n", "")
output = output.replace("\nDolphin\n\n", "")
output = output.replace("Dolphin: ", "")
output = output.replace("Assistant: ", "")
if not output.endswith('.') and not output.endswith('?') and not output.endswith('!'):
last_punct = output.rfind('.')
last_q = output.rfind('?')
if last_q > last_punct:
last_punct = last_q
last_ex = output.rfind('!')
if last_ex > last_punct:
last_punct = last_ex
if last_punct > 0:
output = output[:last_punct+1]
return output
|