Spaces:
Sleeping
Sleeping
File size: 7,150 Bytes
bfa59ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import datetime
import logging
import time
from .dist_util import get_dist_info, master_only
initialized_logger = {}
class AvgTimer():
def __init__(self, window=200):
self.window = window # average window
self.current_time = 0
self.total_time = 0
self.count = 0
self.avg_time = 0
self.start()
def start(self):
self.start_time = self.tic = time.time()
def record(self):
self.count += 1
self.toc = time.time()
self.current_time = self.toc - self.tic
self.total_time += self.current_time
# calculate average time
self.avg_time = self.total_time / self.count
# reset
if self.count > self.window:
self.count = 0
self.total_time = 0
self.tic = time.time()
def get_current_time(self):
return self.current_time
def get_avg_time(self):
return self.avg_time
class MessageLogger():
"""Message logger for printing.
Args:
opt (dict): Config. It contains the following keys:
name (str): Exp name.
logger (dict): Contains 'print_freq' (str) for logger interval.
train (dict): Contains 'total_iter' (int) for total iters.
use_tb_logger (bool): Use tensorboard logger.
start_iter (int): Start iter. Default: 1.
tb_logger (obj:`tb_logger`): Tensorboard logger. Default: None.
"""
def __init__(self, opt, start_iter=1, tb_logger=None):
self.exp_name = opt['name']
self.interval = opt['logger']['print_freq']
self.start_iter = start_iter
self.max_iters = opt['train']['total_iter']
self.use_tb_logger = opt['logger']['use_tb_logger']
self.tb_logger = tb_logger
self.start_time = time.time()
self.logger = get_root_logger()
def reset_start_time(self):
self.start_time = time.time()
@master_only
def __call__(self, log_vars):
"""Format logging message.
Args:
log_vars (dict): It contains the following keys:
epoch (int): Epoch number.
iter (int): Current iter.
lrs (list): List for learning rates.
time (float): Iter time.
data_time (float): Data time for each iter.
"""
# epoch, iter, learning rates
epoch = log_vars.pop('epoch')
current_iter = log_vars.pop('iter')
lrs = log_vars.pop('lrs')
message = (f'[{self.exp_name[:5]}..][epoch:{epoch:3d}, iter:{current_iter:8,d}, lr:(')
for v in lrs:
message += f'{v:.3e},'
message += ')] '
# time and estimated time
if 'time' in log_vars.keys():
iter_time = log_vars.pop('time')
data_time = log_vars.pop('data_time')
total_time = time.time() - self.start_time
time_sec_avg = total_time / (current_iter - self.start_iter + 1)
eta_sec = time_sec_avg * (self.max_iters - current_iter - 1)
eta_str = str(datetime.timedelta(seconds=int(eta_sec)))
message += f'[eta: {eta_str}, '
message += f'time (data): {iter_time:.3f} ({data_time:.3f})] '
# other items, especially losses
for k, v in log_vars.items():
message += f'{k}: {v:.4e} '
# tensorboard logger
if self.use_tb_logger and 'debug' not in self.exp_name:
if k.startswith('l_'):
self.tb_logger.add_scalar(f'losses/{k}', v, current_iter)
else:
self.tb_logger.add_scalar(k, v, current_iter)
self.logger.info(message)
@master_only
def init_tb_logger(log_dir):
from torch.utils.tensorboard import SummaryWriter
tb_logger = SummaryWriter(log_dir=log_dir)
return tb_logger
@master_only
def init_wandb_logger(opt):
"""We now only use wandb to sync tensorboard log."""
import wandb
logger = get_root_logger()
project = opt['logger']['wandb']['project']
resume_id = opt['logger']['wandb'].get('resume_id')
if resume_id:
wandb_id = resume_id
resume = 'allow'
logger.warning(f'Resume wandb logger with id={wandb_id}.')
else:
wandb_id = wandb.util.generate_id()
resume = 'never'
wandb.init(id=wandb_id, resume=resume, name=opt['name'], config=opt, project=project, sync_tensorboard=True)
logger.info(f'Use wandb logger with id={wandb_id}; project={project}.')
def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None):
"""Get the root logger.
The logger will be initialized if it has not been initialized. By default a
StreamHandler will be added. If `log_file` is specified, a FileHandler will
also be added.
Args:
logger_name (str): root logger name. Default: 'basicsr'.
log_file (str | None): The log filename. If specified, a FileHandler
will be added to the root logger.
log_level (int): The root logger level. Note that only the process of
rank 0 is affected, while other processes will set the level to
"Error" and be silent most of the time.
Returns:
logging.Logger: The root logger.
"""
logger = logging.getLogger(logger_name)
# if the logger has been initialized, just return it
if logger_name in initialized_logger:
return logger
format_str = '%(asctime)s %(levelname)s: %(message)s'
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter(format_str))
logger.addHandler(stream_handler)
logger.propagate = False
rank, _ = get_dist_info()
if rank != 0:
logger.setLevel('ERROR')
elif log_file is not None:
logger.setLevel(log_level)
# add file handler
file_handler = logging.FileHandler(log_file, 'w')
file_handler.setFormatter(logging.Formatter(format_str))
file_handler.setLevel(log_level)
logger.addHandler(file_handler)
initialized_logger[logger_name] = True
return logger
def get_env_info():
"""Get environment information.
Currently, only log the software version.
"""
import torch
import torchvision
from basicsr.version import __version__
msg = r"""
____ _ _____ ____
/ __ ) ____ _ _____ (_)_____/ ___/ / __ \
/ __ |/ __ `// ___// // ___/\__ \ / /_/ /
/ /_/ // /_/ /(__ )/ // /__ ___/ // _, _/
/_____/ \__,_//____//_/ \___//____//_/ |_|
______ __ __ __ __
/ ____/____ ____ ____/ / / / __ __ _____ / /__ / /
/ / __ / __ \ / __ \ / __ / / / / / / // ___// //_/ / /
/ /_/ // /_/ // /_/ // /_/ / / /___/ /_/ // /__ / /< /_/
\____/ \____/ \____/ \____/ /_____/\____/ \___//_/|_| (_)
"""
msg += ('\nVersion Information: '
f'\n\tBasicSR: {__version__}'
f'\n\tPyTorch: {torch.__version__}'
f'\n\tTorchVision: {torchvision.__version__}')
return msg
|