File size: 594 Bytes
c2a79e9 a94ad8d a7f8709 a94ad8d 1a03806 a94ad8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import torch
import gradio as gr
from transformers import pipeline
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small"
)
def transcribe(input_audio):
# Perform speech recognition on the input audio
transcription = asr_pipeline(input_audio)["text"]
return transcription
gradio_app = gr.Interface(
fn=transcribe,
inputs=gr.Audio(type="filepath", label="Record or Upload Audio"),
outputs=gr.Textbox(label="Transcription"),
title="Speech to Text Transcription with Whisper",
)
if __name__ == "__main__":
gradio_app.launch()
|