File size: 1,991 Bytes
2abf116 a4dc223 f30185d 2abf116 f30185d 2abf116 6e0ffb7 2abf116 3bda041 2abf116 f30185d a792718 2abf116 64af198 2abf116 64af198 2abf116 a4dc223 5012113 a4dc223 2abf116 a4dc223 5012113 a4dc223 2abf116 a4dc223 f30185d a4dc223 5012113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import json
import spaces
import requests
import numpy as np
import gradio as gr
from PIL import Image
from io import BytesIO
from turtle import title
from transformers import pipeline
import ast
pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip")
file_path = 'config.json'
# Open and read the JSON file
with open(file_path, 'r') as file:
data = json.load(file)
COLOURS_DICT = data['color_mapping']
def shot(input, category):
subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category)
return {
"colors":[
"main":mainColour,
"sub":subColour,
"score":score
]
}
@spaces.GPU
def get_colour(image_urls, category):
colourLabels = list(COLOURS_DICT.keys())
for i in range(len(colourLabels)):
colourLabels[i] = colourLabels[i] + " clothing: " + category
responses = pipe(image_urls, candidate_labels=colourLabels)
# Get the most common colour
mainColour = responses[0][0]['label'].split(" clothing:")[0]
if mainColour not in COLOURS_DICT:
return None, None, None
# Add category to the end of each label
labels = COLOURS_DICT[mainColour]
for i in range(len(labels)):
labels[i] = labels[i] + " clothing: " + category
# Run pipeline in one go
responses = pipe(image_urls, candidate_labels=labels)
subColour = responses[0][0]['label'].split(" clothing:")[0]
return subColour, mainColour, responses[0][0]['score']
# Define the Gradio interface with the updated components
iface = gr.Interface(
fn=shot,
inputs=[
gr.Textbox(label="Image URLs (starting with http/https) comma seperated "),
gr.Textbox(label="Category")
],
outputs=gr.Label(),
description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.",
title="Full product flow"
)
# Launch the interface
iface.launch()
|