Spaces:
Running
Running
File size: 6,289 Bytes
68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 8721562 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 e552ac2 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 8721562 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 ed2c8ad 68ec988 a1a35ae 68ec988 ed2c8ad 68ec988 c311c48 ed2c8ad 68ec988 5fcdfe8 68ec988 e552ac2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
from langchain.chains import LLMChain
import os
import sqlite3
import praw
import json
from datetime import datetime, timedelta
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain.prompts import ChatPromptTemplate
from langchain.chains import ConversationChain, LLMChain
from langchain.memory import ConversationBufferMemory
load_dotenv()
# Initialize the LLM via LangChain (using Groq)
llm = ChatGroq(
groq_api_key=os.getenv("GROQ_API_KEY"),
model_name="meta-llama/llama-4-maverick-17b-128e-instruct",
temperature=0.2
)
# Embedding Model
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# Reddit API Setup
reddit = praw.Reddit(
client_id=os.getenv("REDDIT_CLIENT_ID"),
client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
user_agent=os.getenv("REDDIT_USER_AGENT")
)
# SQLite DB Connection
def get_db_conn():
return sqlite3.connect("reddit_data.db", check_same_thread=False)
# Set up the database schema
def setup_db():
conn = get_db_conn()
cur = conn.cursor()
try:
cur.execute("""
CREATE TABLE IF NOT EXISTS reddit_posts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
reddit_id TEXT UNIQUE,
keyword TEXT,
title TEXT,
post_text TEXT,
comments TEXT,
created_at TEXT,
embedding TEXT,
metadata TEXT
);
""")
conn.commit()
except Exception as e:
print("DB Setup Error:", e)
finally:
cur.close()
conn.close()
# Keyword filter
def keyword_in_post_or_comments(post, keyword):
keyword_lower = keyword.lower()
combined_text = (post.title + " " + post.selftext).lower()
if keyword_lower in combined_text:
return True
post.comments.replace_more(limit=None)
for comment in post.comments.list():
if keyword_lower in comment.body.lower():
return True
return False
# Fetch and process Reddit data
def fetch_reddit_data(keyword, days=7, limit=None):
end_time = datetime.utcnow()
start_time = end_time - timedelta(days=days)
subreddit = reddit.subreddit("all")
posts_generator = subreddit.search(keyword, sort="new", time_filter="all", limit=limit)
data = []
for post in posts_generator:
created = datetime.utcfromtimestamp(post.created_utc)
if created < start_time:
break
if not keyword_in_post_or_comments(post, keyword):
continue
post.comments.replace_more(limit=None)
comments = [comment.body for comment in post.comments.list()]
combined_text = f"{post.title}\n{post.selftext}\n{' '.join(comments)}"
embedding = embedder.encode(combined_text).tolist()
metadata = {
"url": post.url,
"subreddit": post.subreddit.display_name,
"comments_count": len(comments)
}
data.append({
"reddit_id": post.id,
"keyword": keyword,
"title": post.title,
"post_text": post.selftext,
"comments": comments,
"created_at": created.isoformat(),
"embedding": embedding,
"metadata": metadata
})
if data:
save_to_db(data)
# Save data into SQLite
def save_to_db(posts):
conn = get_db_conn()
cur = conn.cursor()
for post in posts:
try:
cur.execute("""
INSERT OR IGNORE INTO reddit_posts
(reddit_id, keyword, title, post_text, comments, created_at, embedding, metadata)
VALUES (?, ?, ?, ?, ?, ?, ?, ?);
""", (
post["reddit_id"],
post["keyword"],
post["title"],
post["post_text"],
json.dumps(post["comments"]),
post["created_at"],
json.dumps(post["embedding"]),
json.dumps(post["metadata"])
))
except Exception as e:
print("Insert Error:", e)
conn.commit()
cur.close()
conn.close()
# Retrieve similar context from DB
def retrieve_context(question, keyword, reddit_id=None, top_k=10):
lower_q = question.lower()
requested_top_k = 50 if any(word in lower_q for word in ["summarize", "overview", "all posts"]) else top_k
conn = get_db_conn()
cur = conn.cursor()
if reddit_id:
cur.execute("""
SELECT title, post_text, comments FROM reddit_posts
WHERE reddit_id = ?;
""", (reddit_id,))
else:
cur.execute("""
SELECT title, post_text, comments FROM reddit_posts
WHERE keyword = ? ORDER BY datetime(created_at) DESC LIMIT ?;
""", (keyword, requested_top_k))
results = cur.fetchall()
cur.close()
conn.close()
return results
# Summarizer
summarize_prompt = ChatPromptTemplate.from_template("""
You are a summarizer. Summarize the following context from Reddit posts into a concise summary that preserves the key insights. Do not add extra commentary.
Context:
{context}
Summary:
""")
summarize_chain = LLMChain(llm=llm, prompt=summarize_prompt)
# Chatbot memory and prompt
memory = ConversationBufferMemory(memory_key="chat_history")
chat_prompt = ChatPromptTemplate.from_template("""
Chat History:
{chat_history}
Context from Reddit and User Question:
{input}
Act as a Professional Assistant as an incremental chat agent. Provide reasoning and answer clearly based on the context and chat history. Your response should be valid, concise, Attractive and relevant.
""")
chat_chain = LLMChain(
llm=llm,
prompt=chat_prompt,
memory=memory,
verbose=True
)
# Chatbot response
def get_chatbot_response(question, keyword, reddit_id=None):
context_posts = retrieve_context(question, keyword, reddit_id)
context = "\n\n".join([f"{p[0]}:\n{p[1]}" for p in context_posts])
if len(context) > 3000:
context = summarize_chain.invoke({"context": context})
combined_input = f"Context:\n{context}\n\nUser Question: {question}"
response = chat_chain.invoke({"input": combined_input})
return response, context_posts
|