File size: 28,683 Bytes
2956799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# -*- coding: utf-8 -*-
"""
Author: Philipp Seidl
        ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning
        Johannes Kepler University Linz
Contact: seidl@ml.jku.at

Model related functionality
"""
from .utils import top_k_accuracy
from .plotutils import plot_loss, plot_topk, plot_nte
from .molutils import convert_smiles_to_fp
import os
import numpy as np
import torch
import torch.nn as nn
from collections import defaultdict
from scipy import sparse
import logging
from tqdm import tqdm
import wandb

log = logging.getLogger(__name__)

class ChemRXNDataset(torch.utils.data.Dataset):
    "Torch Dataset for ChemRXN containing Xs: the input as np array, target: the target molecules (or nothing), and ys: the label"
    def __init__(self, Xs, target, ys, is_smiles=False, fp_size=2048, fingerprint_type='morgan'):
        self.is_smiles=is_smiles
        if is_smiles:
            self.Xs = Xs
            self.target = target
            self.fp_size = fp_size
            self.fingerprint_type = fingerprint_type
        else:
            self.Xs = Xs.astype(np.float32)
            self.target = target.astype(np.float32)
        self.ys = ys
        self.ys_is_sparse = isinstance(self.ys, sparse.csr.csr_matrix)

    def __getitem__(self, k):
        mol_fp = self.Xs[k]
        if self.is_smiles:
            mol_fp = convert_smiles_to_fp(mol_fp, fp_size=self.fp_size, which=self.fingerprint_type).astype(np.float32)
        
        target = None if self.target is None else self.target[k]
        if self.is_smiles and self.target:
            target = convert_smiles_to_fp(target, fp_size=self.fp_size, which=self.fingerprint_type).astype(np.float32)
        
        label = self.ys[k]
        if isinstance(self.ys, sparse.csr.csr_matrix):
            label = label.toarray()[0]
            
        return (mol_fp, target, label)

    def __len__(self):
        return len(self.Xs)

class ModelConfig(object):
    def __init__(self, **kwargs):
        self.fingerprint_type = kwargs.pop("fingerprint_type", 'morgan')
        self.template_fp_type = kwargs.pop("template_fp_type", 'rdk')
        self.num_templates = kwargs.pop("num_templates", 401)
        self.fp_size = kwargs.pop("fp_size", 2048)
        self.fp_radius = kwargs.pop("fp_radius", 4)

        self.device = kwargs.pop("device", 'cuda' if torch.cuda.is_available() else 'cpu')
        self.batch_size = kwargs.pop("batch_size", 32)
        self.pooling_operation_state_embedding = kwargs.pop('pooling_operation_state_embedding', 'mean')
        self.pooling_operation_head = kwargs.pop('pooling_operation_head', 'max')

        self.dropout = kwargs.pop('dropout', 0.0)

        self.lr = kwargs.pop('lr', 1e-4)
        self.optimizer = kwargs.pop("optimizer", "Adam")

        self.activation_function = kwargs.pop('activation_function', 'ReLU')
        self.verbose = kwargs.pop("verbose", False)  # debugging or printing additional warnings / information set tot True

        self.hopf_input_size = kwargs.pop('hopf_input_size', 2048)
        self.hopf_output_size = kwargs.pop("hopf_output_size", 768)
        self.hopf_num_heads = kwargs.pop("hopf_num_heads", 1)
        self.hopf_asso_dim = kwargs.pop("hopf_asso_dim", 768)
        self.hopf_association_activation = kwargs.pop("hopf_association_activation", None)
        self.hopf_beta = kwargs.pop("hopf_beta",0.125) #  1/(self.hopf_asso_dim**(1/2) sqrt(d_k)
        self.norm_input = kwargs.pop("norm_input",False)
        self.norm_asso = kwargs.pop("norm_asso", False)

        # additional experimental hyperparams
        if 'hopf_n_layers' in kwargs.keys():
            self.hopf_n_layers = kwargs.pop('hopf_n_layers', 0)
        if 'mol_encoder_layers' in kwargs.keys():
            self.mol_encoder_layers = kwargs.pop('mol_encoder_layers', 1)
        if 'temp_encoder_layers' in kwargs.keys():
            self.temp_encoder_layers = kwargs.pop('temp_encoder_layers', 1)
        if 'encoder_af' in kwargs.keys():
            self.encoder_af = kwargs.pop('encoder_af', 'ReLU')

        # additional kwargs
        for key, value in kwargs.items():
            try:
                setattr(self, key, value)
            except AttributeError as err:
                log.error(f"Can't set {key} with value {value} for {self}")
                raise err


class Encoder(nn.Module):
    """Simple FFNN"""
    def __init__(self, input_size: int = 2048, output_size: int = 1024,
                    num_layers: int = 1, dropout: float = 0.3, af_name: str ='None', 
                    norm_in: bool = False, norm_out: bool = False):
        super().__init__()
        self.ws = []
        self.setup_af(af_name)
        self.norm_in = (lambda k: k) if not norm_in else torch.nn.LayerNorm(input_size, elementwise_affine=False)
        self.norm_out = (lambda k: k) if not norm_out else torch.nn.LayerNorm(output_size, elementwise_affine=False)
        self.setup_ff(input_size, output_size, num_layers)
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x: torch.Tensor):
        x = self.norm_in(x)
        for i, w in enumerate(self.ws):
            if i==(len(self.ws)-1):
                x = self.dropout(w(x)) # all except last haf ff_af
            else:
                x = self.dropout(self.af(w(x)))
        x = self.norm_out(x)
        return x

    def setup_ff(self, input_size:int, output_size:int, num_layers=1):
        """setup feed-forward NN with n-layers"""
        for n in range(0, num_layers):
            w = nn.Linear(input_size if n==0 else output_size, output_size)
            torch.nn.init.kaiming_normal_(w.weight, mode='fan_in', nonlinearity='linear') # eqiv to LeCun init
            setattr(self, f'W_{n}', w) # consider doing a step-wise reduction
            self.ws.append(getattr(self, f'W_{n}'))

    def setup_af(self, af_name : str):
        """set activation function"""
        if af_name is None or (af_name == 'None'):
          self.af = lambda k: k
        else:
          try:
              self.af = getattr(nn, af_name)()
          except AttributeError as err:
              log.error(f"Can't find activation-function {af_name} in torch.nn")
              raise err


class MoleculeEncoder(Encoder):
    """
    Class for Molecule encoder: can be any class mapping Smiles to a Vector (preferable differentiable ;)
    """
    def __init__(self, config):
        self.config = config

class FPMolEncoder(Encoder):
    """
    Fingerprint Based Molecular encoder
    """
    def __init__(self, config):
        super().__init__(input_size = config.hopf_input_size*config.hopf_num_heads,
                   output_size = config.hopf_asso_dim*config.hopf_num_heads,
                   num_layers = config.mol_encoder_layers,
                   dropout = config.dropout,
                   af_name = config.encoder_af,
                   norm_in = config.norm_input,
                   norm_out = config.norm_asso,
                  )
        # number of layers = self.config.mol_encoder_layers
        # layer-dimension = self.config.hopf_asso_dim
        # activation-function = self.config.af

        self.config = config

    def forward_smiles(self, list_of_smiles: list):
        fp_tensor = self.convert_smiles_to_tensor(list_of_smiles)
        return self.forward(fp_tensor)

    def convert_smiles_to_tensor(self, list_of_smiles):
        fps = convert_smiles_to_fp(list_of_smiles, fp_size=self.config.fp_size, 
                                   which=self.config.fingerprint_type, radius=self.config.fp_radius)
        fps_tensor = torch.from_numpy(fps.astype(np.float)).to(dtype=torch.float).to(self.config.device)
        return fps_tensor

class TemplateEncoder(Encoder):
    """
    Class for Template encoder: can be any class mapping a Smarts-Reaction to a Vector (preferable differentiable ;)
    """
    def __init__(self, config):
        super().__init__(input_size = config.hopf_input_size*config.hopf_num_heads,
                   output_size = config.hopf_asso_dim*config.hopf_num_heads,
                   num_layers = config.temp_encoder_layers,
                   dropout = config.dropout,
                   af_name = config.encoder_af,
                   norm_in = config.norm_input,
                   norm_out = config.norm_asso,
                  )
        self.config = config
        #number of layers
        #template fingerprint type
        #random template threshold
        #reactant pooling
        if config.temp_encoder_layers==0:
            print('No Key-Projection = Static Key/Templates')
            assert self.config.hopf_asso_dim==self.config.fp_size
            self.wks = []


class MHN(nn.Module):
    """
    MHN - modern Hopfield Network -- for Template relevance prediction
    """
    def __init__(self, config=None, layer2weight=0.05, use_template_encoder=True):
        super().__init__()
        if config:
            self.config = config
        else:
            self.config = ModelConfig()
        self.beta = self.config.hopf_beta
        # hopf_num_heads
        self.mol_encoder = FPMolEncoder(self.config)
        if use_template_encoder:
            self.template_encoder = TemplateEncoder(self.config)

        self.W_v = None
        self.layer2weight = layer2weight

        # more MHN layers -- added recursively
        if hasattr(self.config, 'hopf_n_layers'):
            di = self.config.__dict__
            di['hopf_n_layers'] -= 1
            if di['hopf_n_layers']>0:
                conf_wo_hopf_nlayers = ModelConfig(**di)
                self.layer = MHN(conf_wo_hopf_nlayers)
                if di['hopf_n_layers']!=0:
                    self.W_v = nn.Linear(self.config.hopf_asso_dim, self.config.hopf_input_size)
                    torch.nn.init.kaiming_normal_(self.W_v.weight, mode='fan_in', nonlinearity='linear') # eqiv to LeCun init

        self.softmax = torch.nn.Softmax(dim=1)

        self.lossfunction = nn.CrossEntropyLoss(reduction='none')#, weight=class_weights)
        self.pretrain_lossfunction = nn.BCEWithLogitsLoss(reduction='none')#, weight=class_weights)

        self.lr = self.config.lr

        if self.config.hopf_association_activation is None or (self.config.hopf_association_activation.lower()=='none'):
            self.af = lambda k: k
        else:
            self.af = getattr(nn, self.config.hopf_association_activation)()

        self.pooling_operation_head = getattr(torch, self.config.pooling_operation_head)

        self.X = None # templates projected to Hopfield Layer

        self.optimizer = getattr(torch.optim, self.config.optimizer)(self.parameters(), lr=self.lr)
        self.steps = 0
        self.hist = defaultdict(list)
        self.to(self.config.device)

    def set_templates(self, template_list, which='rdk', fp_size=None, radius=2, learnable=False, njobs=1, only_templates_in_batch=False):
        self.template_list = template_list.copy()
        if fp_size is None:
            fp_size = self.config.fp_size
        if len(template_list)>=100000:
            import math
            print('batch-wise template_calculation')
            bs = 30000
            final_temp_emb = torch.zeros((len(template_list), fp_size)).float().to(self.config.device)
            for b in range(math.ceil(len(template_list)//bs)+1):
                self.template_list = template_list[bs*b:min(bs*(b+1), len(template_list))]
                templ_emb = self.update_template_embedding(which=which, fp_size=fp_size, radius=radius, learnable=learnable, njobs=njobs, only_templates_in_batch=only_templates_in_batch)
                final_temp_emb[bs*b:min(bs*(b+1), len(template_list))] = torch.from_numpy(templ_emb)
            self.templates = final_temp_emb
        else:
            self.update_template_embedding(which=which, fp_size=fp_size, radius=radius, learnable=learnable, njobs=njobs, only_templates_in_batch=only_templates_in_batch)
        
        self.set_templates_recursively()

    def set_templates_recursively(self):
        if 'hopf_n_layers' in self.config.__dict__.keys():
            if self.config.hopf_n_layers >0:
                self.layer.templates = self.templates
                self.layer.set_templates_recursively()

    def update_template_embedding(self,fp_size=2048, radius=4, which='rdk', learnable=False, njobs=1, only_templates_in_batch=False):
        print('updating template-embedding; (just computing the template-fingerprint and using that)')
        bs = self.config.batch_size

        split_template_list = [str(t).split('>')[0].split('.') for t in self.template_list]
        templates_np = convert_smiles_to_fp(split_template_list, is_smarts=True, fp_size=fp_size, radius=radius, which=which, njobs=njobs)

        split_template_list = [str(t).split('>')[-1].split('.') for t in self.template_list]
        reactants_np = convert_smiles_to_fp(split_template_list, is_smarts=True, fp_size=fp_size, radius=radius, which=which, njobs=njobs)

        template_representation = templates_np-(reactants_np*0.5)
        if learnable:
            self.templates = torch.nn.Parameter(torch.from_numpy(template_representation).float(), requires_grad=True).to(self.config.device)
            self.register_parameter(name='templates', param=self.templates)
        else:
            if only_templates_in_batch:
                self.templates_np = template_representation
            else:
                self.templates = torch.from_numpy(template_representation).float().to(self.config.device)
                
        return template_representation


    def np_fp_to_tensor(self, np_fp):
        return torch.from_numpy(np_fp.astype(np.float64)).to(self.config.device).float()

    def masked_loss_fun(self, loss_fun, h_out, ys_batch):
        if loss_fun == self.BCEWithLogitsLoss:
            mask = (ys_batch != -1).float()
            ys_batch = ys_batch.float()
        else:
            mask = (ys_batch.long() != -1).long()
        mask_sum = int(mask.sum().cpu().numpy())
        if mask_sum == 0:
            return 0

        ys_batch = ys_batch * mask

        loss = (loss_fun(h_out, ys_batch * mask) * mask.float()).sum() / mask_sum  # only mean from non -1
        return loss

    def compute_losses(self, out, ys_batch, head_loss_weight=None):

        if len(ys_batch.shape)==2:
            if ys_batch.shape[1]==self.config.num_templates: # it is in pretraining_mode
                loss = self.pretrain_lossfunction(out, ys_batch.float()).mean()
            else:
                # legacy from policyNN
                loss = self.lossfunction(out, ys_batch[:, 2]).mean()  # WARNING: HEAD4 Reaction Template is ys[:,2]
        else:
            loss = self.lossfunction(out, ys_batch).mean() 
        return loss

    def forward_smiles(self, list_of_smiles, templates=None):
        state_tensor = self.mol_encoder.convert_smiles_to_tensor(list_of_smiles)
        return self.forward(state_tensor, templates=templates)

    def forward(self, m, templates=None):
        """
        m: molecule in the form batch x fingerprint
        templates: None or newly given templates if not instanciated
        returns logits ranking the templates for each molecule
        """
        #states_emb = self.fcfe(state_fp)
        bs = m.shape[0] #batch_size
        #templates = self.temp_emb(torch.arange(0,2000).long())
        if (templates is None) and (self.X is None) and (self.templates is None):
            raise Exception('Either pass in templates, or init templates by runnting clf.set_templates')
        n_temp = len(templates) if templates is not None else len(self.templates)
        if self.training or (templates is None) or (self.X is not None):
            templates = templates if templates is not None else self.templates
            X = self.template_encoder(templates)
        else:
            X = self.X # precomputed from last forward run
        
        Xi = self.mol_encoder(m)

        Xi = Xi.view(bs, self.config.hopf_num_heads, self.config.hopf_asso_dim) # [bs, H, A]
        X = X.view(1, n_temp, self.config.hopf_asso_dim, self.config.hopf_num_heads) #[1, T, A, H]

        XXi = torch.tensordot(Xi, X, dims=[(2,1), (2,0)]) # AxA -> [bs, T, H]
        
        # pooling over heads
        if self.config.hopf_num_heads<=1:
            #QKt_pooled = QKt
            XXi = XXi[:,:,0] #torch.squeeze(QKt, dim=2)
        else:
            XXi = self.pooling_operation_head(XXi, dim=2) # default is max pooling over H [bs, T]
            if (self.config.pooling_operation_head =='max') or (self.config.pooling_operation_head =='min'):
                XXi = XXi[0] #max and min also return the indices =S

        out = self.beta*XXi # [bs, T, H] # softmax over dim=1 #pooling_operation_head
        
        self.xinew = self.softmax(out)@X.view(n_temp, self.config.hopf_asso_dim) # [bs,T]@[T,emb] -> [bs,emb]

        if self.W_v:
            # call layers recursive
            hopfout = self.W_v(self.xinew) # [bs,emb]@[emb,hopf_inp]  --> [bs, hopf_inp]
            # TODO check if using x_pooled or if not going through mol_encoder again
            hopfout = hopfout + m # skip-connection
            # give it to the next layer
            out2 = self.layer.forward(hopfout) #templates=self.W_v(self.K)
            out = out*(1-self.layer2weight)+out2*self.layer2weight

        return out

    def train_from_np(self, Xs, targets, ys, is_smiles=False, epochs=2, lr=0.001, bs=32,
                      permute_batches=False, shuffle=True, optimizer=None,
                      use_dataloader=True, verbose=False,
                      wandb=None, scheduler=None, only_templates_in_batch=False):
        """
        Xs in the form sample x states
        targets
        ys in the form sample x [y_h1, y_h2, y_h3, y_h4]
        """
        self.train()
        if optimizer is None:
            try:
                self.optimizer = getattr(torch.optim, self.config.optimizer)(self.parameters(), lr=self.lr if lr is None else lr)
            except AttributeError as err:
                log.error(f"Can't find optimizer {config.optimizer} in torch.optim")
                raise err
            optimizer = self.optimizer

        dataset = ChemRXNDataset(Xs, targets, ys, is_smiles=is_smiles,
                                 fp_size=self.config.fp_size, fingerprint_type=self.config.fingerprint_type)

        dataloader = torch.utils.data.DataLoader(dataset, batch_size=bs, shuffle=shuffle, sampler=None,
                   batch_sampler=None, num_workers=0, collate_fn=None,
                   pin_memory=False, drop_last=False, timeout=0,
                   worker_init_fn=None)

        for epoch in range(epochs):  # loop over the dataset multiple times
            running_loss = 0.0
            running_loss_dict = defaultdict(int)
            batch_order = range(0, len(Xs), bs)
            if permute_batches:
                batch_order = np.random.permutation(batch_order)

            for step, s in tqdm(enumerate(dataloader),mininterval=2):
                batch = [b.to(self.config.device, non_blocking=True) for b in s]
                Xs_batch, target_batch, ys_batch = batch

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward + backward + optimize
                out = self.forward(Xs_batch)
                total_loss = self.compute_losses(out, ys_batch)

                loss_dict = {'CE_loss': total_loss}

                total_loss.backward()

                optimizer.step()
                if scheduler:
                    scheduler.step()
                self.steps += 1

                # print statistics
                for k in loss_dict:
                    running_loss_dict[k] += loss_dict[k].item()
                try:
                    running_loss += total_loss.item()
                except:
                    running_loss += 0

                rs = min(100,len(Xs)//bs) # reporting/logging steps
                if step % rs == (rs-1):  # print every 2000 mini-batches
                    if verbose: print('[%d, %5d] loss: %.3f' %
                          (epoch + 1, step + 1, running_loss / rs))
                    self.hist['step'].append(self.steps)
                    self.hist['loss'].append(running_loss/rs)
                    self.hist['trianing_running_loss'].append(running_loss/rs)

                    [self.hist[k].append(running_loss_dict[k]/rs) for k in running_loss_dict]

                    if wandb:
                        wandb.log({'trianing_running_loss': running_loss / rs})

                    running_loss = 0.0
                    running_loss_dict = defaultdict(int)

        if verbose: print('Finished Training')
        return optimizer

    def evaluate(self, Xs, targets, ys, split='test', is_smiles=False, bs = 32, shuffle=False, wandb=None, only_loss=False):
        self.eval()
        y_preds = np.zeros( (ys.shape[0], self.config.num_templates), dtype=np.float16)
        
        loss_metrics = defaultdict(int)
        new_hist = defaultdict(float)
        with torch.no_grad():
            dataset = ChemRXNDataset(Xs, targets, ys, is_smiles=is_smiles,
                                     fp_size=self.config.fp_size, fingerprint_type=self.config.fingerprint_type)
            dataloader = torch.utils.data.DataLoader(dataset, batch_size=bs, shuffle=shuffle, sampler=None,
                       batch_sampler=None, num_workers=0, collate_fn=None,
                       pin_memory=False, drop_last=False, timeout=0,
                       worker_init_fn=None)

            #for step, s in eoutputs = self.forward(batch[0], batchnumerate(range(0, len(Xs), bs)):
            for step, batch in enumerate(dataloader):#
                batch = [b.to(self.config.device, non_blocking=True) for b in batch]
                ys_batch = batch[2]
                
                if hasattr(self, 'templates_np'):
                    outputs = []
                    for ii in range(10):
                        tlen = len(self.templates_np)
                        i_tlen = tlen//10
                        templates = torch.from_numpy(self.templates_np[(i_tlen*ii):min(i_tlen*(ii+1), tlen)]).float().to(self.config.device)
                        outputs.append( self.forward(batch[0], templates = templates ) )
                    outputs = torch.cat(outputs, dim=0)
                        
                else:
                    outputs = self.forward(batch[0]) 

                loss = self.compute_losses(outputs, ys_batch, None)

                # not quite right because in every batch there might be different number of valid samples
                weight = 1/len(batch[0])#len(Xs[s:min(s + bs, len(Xs))]) / len(Xs)

                loss_metrics['loss'] += (loss.item())

                if len(ys.shape)>1:
                    outputs = self.softmax(outputs) if not (ys.shape[1]==self.config.num_templates) else torch.sigmoid(outputs)
                else:
                    outputs = self.softmax(outputs)

                outputs_np = [None if o is None else o.to('cpu').numpy().astype(np.float16) for o in outputs]

                if not only_loss:
                    ks = [1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100]
                    topkacc, mrocc = top_k_accuracy(ys_batch, outputs, k=ks, ret_arocc=True, ret_mrocc=False)
                    # mrocc -- median rank of correct choice
                    for k, tkacc in zip(ks, topkacc):
                        #iterative average update
                        new_hist[f't{k}_acc_{split}'] += (tkacc-new_hist[f't{k}_acc_{split}']) / (step+1)
                        # todo weight by batch-size
                    new_hist[f'meanrank_{split}'] = mrocc

                y_preds[step*bs : min((step+1)*bs,len(y_preds))] = outputs_np


        new_hist[f'steps_{split}'] = (self.steps)
        new_hist[f'loss_{split}'] = (loss_metrics['loss'] / (step+1))

        for k in new_hist:
            self.hist[k].append(new_hist[k])

        if wandb:
            wandb.log(new_hist)


        self.hist[f'loss_{split}'].append(loss_metrics[f'loss'] / (step+1))

        return y_preds

    def save_hist(self, prefix='', postfix=''):
        HIST_PATH = 'data/hist/'
        if not os.path.exists(HIST_PATH):
            os.mkdir(HIST_PATH)
        fn_hist = HIST_PATH+prefix+postfix+'.csv'
        with open(fn_hist, 'w') as fh:
            print(dict(self.hist), file=fh)
        return fn_hist

    def save_model(self, prefix='', postfix='', name_as_conf=False):
        MODEL_PATH = 'data/model/'
        if not os.path.exists(MODEL_PATH):
            os.mkdir(MODEL_PATH)
        if name_as_conf:
            confi_str = str(self.config.__dict__.values()).replace("'","").replace(': ','_').replace(', ',';')
        else:
            confi_str = ''
        model_name = prefix+confi_str+postfix+'.pt'
        torch.save(self.state_dict(), MODEL_PATH+model_name)
        return MODEL_PATH+model_name

    def plot_loss(self):
        plot_loss(self.hist)

    def plot_topk(self, sets=['train', 'valid', 'test'], with_last = 2):
        plot_topk(self.hist, sets=sets, with_last = with_last)

    def plot_nte(self, last_cpt=1, dataset='Sm', include_bar=True):
        plot_nte(self.hist, dataset=dataset, last_cpt=last_cpt, include_bar=include_bar)


class SeglerBaseline(MHN):
    """FFNN - only the Molecule Encoder + an output projection"""
    def __init__(self, config=None):
        config.template_fp_type = 'none'
        config.temp_encoder_layers = 0
        super().__init__(config, use_template_encoder=False)
        self.W_out = torch.nn.Linear(config.hopf_asso_dim, config.num_templates)
        self.optimizer = getattr(torch.optim, self.config.optimizer)(self.parameters(), lr=self.lr)
        self.steps = 0
        self.hist = defaultdict(list)
        self.to(self.config.device)

    def forward(self, m, templates=None):
        """
        m: molecule in the form batch x fingerprint
        templates: won't be used in this case
        returns logits ranking the templates for each molecule
        """
        bs = m.shape[0] #batch_size
        Xi = self.mol_encoder(m)
        Xi = self.mol_encoder.af(Xi) # is not applied in encoder for last layer
        out = self.W_out(Xi) # [bs, T] # softmax over dim=1
        return out

class StaticQK(MHN):
    """ Static QK baseline - beware to have the same fingerprint for mol_encoder as for the template_encoder (fp2048 r4 rdk by default)"""
    def __init__(self, config=None):
        if config:
            self.config = config
        else:
            self.config = ModelConfig()
        super().__init__(config)

        self.fp_size = 2048
        self.fingerprint_type = 'rdk'
        self.beta = 1

    def update_template_embedding(self, which='rdk', fp_size=2048, radius=4, learnable=False):
        bs = self.config.batch_size
        split_template_list = [t.split('>>')[0].split('.') for t in self.template_list]
        self.templates = torch.from_numpy(convert_smiles_to_fp(split_template_list, 
                                                               is_smarts=True, fp_size=fp_size, 
                                                               radius=radius, which=which).max(1)).float().to(self.config.device)


    def forward(self, m, templates=None):
        """

        """
        #states_emb = self.fcfe(state_fp)
        bs = m.shape[0] #batch_size
        
        Xi = m #[bs, emb]
        X = self.templates #[T, emb])

        XXi = Xi@X.T # [bs, T]
        
        # normalize
        t_sum = templates.sum(1) #[T]
        t_sum = t_sum.view(1,-1).expand(bs, -1) #[bs, T]
        XXi = XXi / t_sum
        
        # not neccecaire because it is not trained
        out = self.beta*XXi # [bs, T] # softmax over dim=1
        return out

class Retrosim(StaticQK):
    """ Retrosim-like baseline only for template relevance prediction """
    def fit_with_train(self, X_fp_train, y_train):
        self.templates = torch.from_numpy(X_fp_train).float().to(self.config.device)
        # train_samples, num_templates
        self.sample2acttemplate = torch.nn.functional.one_hot(torch.from_numpy(y_train), self.config.num_templates).float()
        tmpnorm = self.sample2acttemplate.sum(0)
        tmpnorm[tmpnorm==0] = 1
        self.sample2acttemplate = (self.sample2acttemplate / tmpnorm).to(self.config.device) # results in an average after dot product

    def forward(self, m, templates=None):
        """
        """
        out = super().forward(m, templates=templates)
        # bs, train_samples

        # map out to actual templates
        out = out @ self.sample2acttemplate

        return out