File size: 8,737 Bytes
982b37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Multi Band Diffusion models as described in
"From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion"
(paper link).
"""
import typing as tp
import torch
import julius
from .unet import DiffusionUnet
from ..modules.diffusion_schedule import NoiseSchedule
from .encodec import CompressionModel
from ..solvers.compression import CompressionSolver
from .loaders import load_compression_model, load_diffusion_models
class DiffusionProcess:
"""Sampling for a diffusion Model.
Args:
model (DiffusionUnet): Diffusion U-Net model.
noise_schedule (NoiseSchedule): Noise schedule for diffusion process.
"""
def __init__(self, model: DiffusionUnet, noise_schedule: NoiseSchedule) -> None:
self.model = model
self.schedule = noise_schedule
def generate(self, condition: torch.Tensor, initial_noise: torch.Tensor,
step_list: tp.Optional[tp.List[int]] = None):
"""Perform one diffusion process to generate one of the bands.
Args:
condition (torch.Tensor): The embeddings from the compression model.
initial_noise (torch.Tensor): The initial noise to start the process.
"""
return self.schedule.generate_subsampled(model=self.model, initial=initial_noise, step_list=step_list,
condition=condition)
class MultiBandDiffusion:
"""Sample from multiple diffusion models.
Args:
DPs (list of DiffusionProcess): Diffusion processes.
codec_model (CompressionModel): Underlying compression model used to obtain discrete tokens.
"""
def __init__(self, DPs: tp.List[DiffusionProcess], codec_model: CompressionModel) -> None:
self.DPs = DPs
self.codec_model = codec_model
self.device = next(self.codec_model.parameters()).device
@property
def sample_rate(self) -> int:
return self.codec_model.sample_rate
@staticmethod
def get_mbd_musicgen(device=None):
"""Load our diffusion models trained for MusicGen."""
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
path = 'facebook/multiband-diffusion'
filename = 'mbd_musicgen_32khz.th'
name = 'facebook/musicgen-small'
codec_model = load_compression_model(name, device=device)
models, processors, cfgs = load_diffusion_models(path, filename=filename, device=device)
DPs = []
for i in range(len(models)):
schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
return MultiBandDiffusion(DPs=DPs, codec_model=codec_model)
@staticmethod
def get_mbd_24khz(bw: float = 3.0,
device: tp.Optional[tp.Union[torch.device, str]] = None,
n_q: tp.Optional[int] = None):
"""Get the pretrained Models for MultibandDiffusion.
Args:
bw (float): Bandwidth of the compression model.
device (torch.device or str, optional): Device on which the models are loaded.
n_q (int, optional): Number of quantizers to use within the compression model.
"""
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
assert bw in [1.5, 3.0, 6.0], f"bandwidth {bw} not available"
if n_q is not None:
assert n_q in [2, 4, 8]
assert {1.5: 2, 3.0: 4, 6.0: 8}[bw] == n_q, \
f"bandwidth and number of codebooks missmatch to use n_q = {n_q} bw should be {n_q * (1.5 / 2)}"
n_q = {1.5: 2, 3.0: 4, 6.0: 8}[bw]
codec_model = CompressionSolver.model_from_checkpoint(
'//pretrained/facebook/encodec_24khz', device=device)
codec_model.set_num_codebooks(n_q)
codec_model = codec_model.to(device)
path = 'facebook/multiband-diffusion'
filename = f'mbd_comp_{n_q}.pt'
models, processors, cfgs = load_diffusion_models(path, filename=filename, device=device)
DPs = []
for i in range(len(models)):
schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
return MultiBandDiffusion(DPs=DPs, codec_model=codec_model)
@torch.no_grad()
def get_condition(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
"""Get the conditioning (i.e. latent representations of the compression model) from a waveform.
Args:
wav (torch.Tensor): The audio that we want to extract the conditioning from.
sample_rate (int): Sample rate of the audio."""
if sample_rate != self.sample_rate:
wav = julius.resample_frac(wav, sample_rate, self.sample_rate)
codes, scale = self.codec_model.encode(wav)
assert scale is None, "Scaled compression models not supported."
emb = self.get_emb(codes)
return emb
@torch.no_grad()
def get_emb(self, codes: torch.Tensor):
"""Get latent representation from the discrete codes.
Args:
codes (torch.Tensor): Discrete tokens."""
emb = self.codec_model.decode_latent(codes)
return emb
def generate(self, emb: torch.Tensor, size: tp.Optional[torch.Size] = None,
step_list: tp.Optional[tp.List[int]] = None):
"""Generate waveform audio from the latent embeddings of the compression model.
Args:
emb (torch.Tensor): Conditioning embeddings
size (None, torch.Size): Size of the output
if None this is computed from the typical upsampling of the model.
step_list (list[int], optional): list of Markov chain steps, defaults to 50 linearly spaced step.
"""
if size is None:
upsampling = int(self.codec_model.sample_rate / self.codec_model.frame_rate)
size = torch.Size([emb.size(0), self.codec_model.channels, emb.size(-1) * upsampling])
assert size[0] == emb.size(0)
out = torch.zeros(size).to(self.device)
for DP in self.DPs:
out += DP.generate(condition=emb, step_list=step_list, initial_noise=torch.randn_like(out))
return out
def re_eq(self, wav: torch.Tensor, ref: torch.Tensor, n_bands: int = 32, strictness: float = 1):
"""Match the eq to the encodec output by matching the standard deviation of some frequency bands.
Args:
wav (torch.Tensor): Audio to equalize.
ref (torch.Tensor): Reference audio from which we match the spectrogram.
n_bands (int): Number of bands of the eq.
strictness (float): How strict the matching. 0 is no matching, 1 is exact matching.
"""
split = julius.SplitBands(n_bands=n_bands, sample_rate=self.codec_model.sample_rate).to(wav.device)
bands = split(wav)
bands_ref = split(ref)
out = torch.zeros_like(ref)
for i in range(n_bands):
out += bands[i] * (bands_ref[i].std() / bands[i].std()) ** strictness
return out
def regenerate(self, wav: torch.Tensor, sample_rate: int):
"""Regenerate a waveform through compression and diffusion regeneration.
Args:
wav (torch.Tensor): Original 'ground truth' audio.
sample_rate (int): Sample rate of the input (and output) wav.
"""
if sample_rate != self.codec_model.sample_rate:
wav = julius.resample_frac(wav, sample_rate, self.codec_model.sample_rate)
emb = self.get_condition(wav, sample_rate=self.codec_model.sample_rate)
size = wav.size()
out = self.generate(emb, size=size)
if sample_rate != self.codec_model.sample_rate:
out = julius.resample_frac(out, self.codec_model.sample_rate, sample_rate)
return out
def tokens_to_wav(self, tokens: torch.Tensor, n_bands: int = 32):
"""Generate Waveform audio with diffusion from the discrete codes.
Args:
tokens (torch.Tensor): Discrete codes.
n_bands (int): Bands for the eq matching.
"""
wav_encodec = self.codec_model.decode(tokens)
condition = self.get_emb(tokens)
wav_diffusion = self.generate(emb=condition, size=wav_encodec.size())
return self.re_eq(wav=wav_diffusion, ref=wav_encodec, n_bands=n_bands)
|