File size: 879 Bytes
7ee03a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from transformers import pipeline
import gradio as gr


MODEL_NAME = "imageclassif"
HF_USER = "universalml"


def prediction_function(input_file):
    repo_id = HF_USER + "/" + MODEL_NAME
    model = pipeline("image-classification", model=repo_id)

    try:
        result = model(input_file)
        predictions = {}
        labels = []
        for each_label in result:
            predictions[each_label["label"]] = each_label["score"]
            labels.append(each_label["label"])
        result = predictions
    except:
        result = "no data provided!!"

    return result


def create_interface():
    interface = gr.Interface(
        fn=prediction_function,
        inputs=gr.Image(type="pil"),
        outputs=gr.Label(num_top_classes=3),
        title=MODEL_NAME,
    )

    interface.launch(debug=True)


create_interface()