File size: 31,391 Bytes
24df49f
 
 
 
c6e9c8c
fe70438
d443ad5
c6e9c8c
9d5b4c0
8320ba9
24df49f
fe70438
1e05e68
24df49f
1e05e68
24df49f
 
 
 
 
 
7cdc7d0
fe70438
7cdc7d0
fe70438
24df49f
2c69fb8
cd9d84b
d08fbc6
5c24b29
 
 
 
 
 
d443ad5
24df49f
c6e9c8c
d08fbc6
fe70438
1e05e68
 
c6e9c8c
eee0bf8
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82055e6
 
 
 
 
 
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee0bf8
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eee0bf8
9d5b4c0
d08fbc6
 
7cdc7d0
cd9d84b
fe70438
7cdc7d0
9d5b4c0
 
 
8320ba9
 
c6e9c8c
d08fbc6
 
eee0bf8
 
5bbb99c
 
 
 
eee0bf8
 
 
5bbb99c
c6e9c8c
24df49f
9d5b4c0
cd9d84b
24df49f
c6e9c8c
 
35fffae
c6e9c8c
 
24df49f
 
 
fe70438
eee0bf8
c6e9c8c
 
fe70438
 
 
1e05e68
 
 
9d5b4c0
 
 
 
 
 
5bbb99c
 
d08fbc6
 
 
 
 
 
 
 
 
 
 
9d5b4c0
5bbb99c
 
a024d9a
5bbb99c
24df49f
5bbb99c
24df49f
eee0bf8
24df49f
 
 
 
 
 
eee0bf8
1e05e68
eee0bf8
 
 
 
 
1e05e68
eee0bf8
 
 
 
 
 
1e05e68
eee0bf8
 
 
 
 
 
1e05e68
5bbb99c
f6ebc4f
 
 
 
 
 
 
 
 
 
5bbb99c
9245edf
 
 
 
9d5b4c0
 
fe70438
9d5b4c0
 
 
 
 
 
 
 
7cdc7d0
 
 
 
 
67f4e71
 
 
2c69fb8
67f4e71
 
 
2c69fb8
67f4e71
 
 
2c69fb8
67f4e71
9d5b4c0
 
f6ebc4f
9d5b4c0
f6ebc4f
 
2c69fb8
d08fbc6
 
0a1b314
d08fbc6
 
0a1b314
d08fbc6
 
 
 
 
 
0a1b314
9d5b4c0
 
2c69fb8
0a1b314
2c69fb8
c6e9c8c
2c69fb8
 
 
 
9d5b4c0
2c69fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24df49f
2c69fb8
 
d08fbc6
24df49f
2c69fb8
9d5b4c0
 
24df49f
 
 
9d5b4c0
 
 
 
 
2c69fb8
 
 
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08fbc6
2c69fb8
fe70438
 
 
d08fbc6
fe70438
 
 
 
 
 
d08fbc6
59be457
 
d08fbc6
 
2c69fb8
d08fbc6
2c69fb8
d08fbc6
 
 
 
64dd81e
d08fbc6
 
 
 
 
 
 
2c69fb8
 
058c80a
a024d9a
9d5b4c0
 
a024d9a
2c69fb8
 
eee0bf8
d08fbc6
 
c6e9c8c
d08fbc6
c6e9c8c
d443ad5
fe70438
 
 
 
 
 
 
 
 
 
 
 
 
 
eee0bf8
24df49f
 
 
 
9d5b4c0
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6e9c8c
a350a45
9d5b4c0
1e05e68
 
 
 
 
 
 
c6e9c8c
67f4e71
5bbb99c
9d5b4c0
 
 
 
24df49f
9d5b4c0
 
 
24df49f
9d5b4c0
 
 
24df49f
 
 
 
 
 
9d5b4c0
 
 
 
 
24df49f
9d5b4c0
 
 
24df49f
9d5b4c0
1e05e68
9d5b4c0
99f75f9
 
 
 
9d5b4c0
24df49f
 
 
 
 
 
9d5b4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24df49f
9d5b4c0
 
24df49f
 
 
 
 
 
1e05e68
9d5b4c0
 
 
 
 
 
 
 
eee0bf8
9d5b4c0
 
c6e9c8c
9d5b4c0
 
 
c6e9c8c
9d5b4c0
 
 
 
fe70438
d08fbc6
5c24b29
 
99f75f9
 
 
 
 
5c24b29
 
 
 
 
e6be0c8
 
 
eee0bf8
fe70438
5c24b29
 
 
 
 
 
 
 
 
fe70438
88c61d3
 
 
eee0bf8
 
 
 
cd9d84b
eee0bf8
 
 
cd9d84b
eee0bf8
e6be0c8
88c61d3
 
 
 
5c24b29
24df49f
 
 
 
 
 
 
 
 
 
 
 
 
88c61d3
24df49f
 
 
 
 
5bbb99c
24df49f
 
5c24b29
24df49f
5bbb99c
eee0bf8
24df49f
 
 
5bbb99c
 
24df49f
 
 
5bbb99c
 
24df49f
 
5bbb99c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import itertools
import json
import sys
from typing import Any, Dict, Generator, List, Optional, Union

from .artifact import fetch_artifact
from .augmentors import Augmentor, NullAugmentor
from .card import TaskCard
from .collections_operators import GetLength
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
from .deprecation_utils import deprecation
from .error_utils import UnitxtError
from .formats import Format, SystemFormat
from .generator_utils import ReusableGenerator
from .logging_utils import get_logger
from .operator import (
    MultiStreamOperator,
    SequentialOperator,
    SourceSequentialOperator,
    StreamingOperator,
)
from .operators import Set, StreamRefiner
from .schema import FinalizeDataset
from .serializers import SingleTypeSerializer
from .settings_utils import get_constants, get_settings
from .splitters import ConstantSizeSample, RandomSizeSample, Sampler
from .stream import MultiStream
from .system_prompts import EmptySystemPrompt, SystemPrompt
from .task import Task
from .templates import (
    ApplyRandomTemplate,
    ApplySingleTemplate,
    Template,
    TemplatesList,
)
from .type_utils import isoftype
from .utils import LRUCache, recursive_copy

constants = get_constants()
settings = get_settings()
logger = get_logger()


# Used to give meaningful name to recipe steps
class CreateDemosPool(MultiStreamOperator):
    from_stream: str = None
    demos_pool_size: int = None
    demos_removed_from_data: bool = None
    to_field: str = constants.demos_pool_field

    # flake8: noqa: B007
    def process(self, multi_stream: MultiStream) -> MultiStream:
        # generate the demos_pool as a selection of demos_pool_size distinct instances
        # (distinct by their "input_fields" field). The selection is taken from stream named from_stream.
        # The selected instances are later treated as ordinary instances or not, depending on parameter
        # demos_removed_from_data.
        # The selection of instances is done from the first instances of the stream named from_stream.
        # instances that are not distinct from previously selected demo instances, are kept aside, to be later
        # treated like all the remaining instances of stream from_stream.
        if self.from_stream not in multi_stream:
            raise ValueError(
                f"Input multi-stream is missing a stream named '{self.from_stream}' to take demo instances from for the demos_pool."
            )
        if (
            self.demos_removed_from_data is not None
            and self.demos_removed_from_data is True
            and (self.demos_pool_size == sys.maxsize)
        ):
            # going to consume the whole of input stream named self.from_stream for demo instances,
            # and not let demos instances to behave as regular instances. so self.from_stream
            # ends here its life as an input stream that is expected to reach the end of the recipe
            if len(multi_stream) == 1:
                raise ValueError(
                    f"The single input stream, '{self.from_stream}' is to be wholly consumed for generating demos, and no instance is left to use these demos."
                )
        from_stream = multi_stream[self.from_stream]
        demos_pool = []
        input_fields_of_demos_pool = []
        not_selected_from_from_stream = []
        for num_scanned, instance in enumerate(from_stream):
            if "input_fields" not in instance:
                raise ValueError(f"'input_fields' field is missing from '{instance}'.")
            try:
                input_fields_signature = json.dumps(
                    instance["input_fields"], sort_keys=True
                )
            except TypeError:
                input_fields_signature = str(instance["input_fields"])
            if input_fields_signature in input_fields_of_demos_pool:
                not_selected_from_from_stream.append(instance)
                continue
            demos_pool.append(instance)
            input_fields_of_demos_pool.append(input_fields_signature)
            if len(demos_pool) >= self.demos_pool_size:
                break

            # for backward compatibility, do not throw exception here if demos pool is smaller than expected.
            # Delay that for the event (if occurs) that Sample is not be able to sample num_demos demos.

        # to avoid endless recursion in case of not demos_removed_from_data
        demos_pool = recursive_copy(demos_pool)

        set_demos_pool = Set(fields={self.to_field: demos_pool})
        if (
            self.demos_removed_from_data is not None
            and self.demos_removed_from_data is False
        ):
            # all input instances go out. No one is "killed" because selected as demo
            return set_demos_pool(multi_stream)

        if (
            self.demos_removed_from_data is not None
            and self.demos_removed_from_data is True
        ):
            if self.demos_pool_size == sys.maxsize:
                # consume the whole of input stream self.from_stream, just for demos, and do not
                # take any of its instances to behave as a non-demo instance, i.e., a regular instance
                # that consume the demos
                out_ms = MultiStream(
                    {
                        stream_name: multi_stream[stream_name]
                        for stream_name in multi_stream
                        if stream_name != self.from_stream
                    }
                )
                return set_demos_pool(out_ms)

        #  self.demos_removed_from_data and not consume the whole of self.from_stream just for demos
        def from_stream_generator(
            first_layer: list, ms: MultiStream, stream_name: str, start: int
        ) -> Generator:
            yield from first_layer
            yield from itertools.islice(ms[stream_name], start, None)

        new_streams = {}
        for stream_name in multi_stream:
            if stream_name == self.from_stream:
                new_streams[stream_name] = ReusableGenerator(
                    generator=from_stream_generator,
                    gen_kwargs={
                        "first_layer": not_selected_from_from_stream,
                        "ms": multi_stream,
                        "stream_name": self.from_stream,
                        "start": num_scanned + 1,
                    },
                )
            else:
                new_streams[stream_name] = ReusableGenerator(
                    generator=from_stream_generator,
                    gen_kwargs={
                        "first_layer": [],
                        "ms": multi_stream,
                        "stream_name": stream_name,
                        "start": 0,
                    },
                )

        ms = MultiStream.from_generators(new_streams)
        return set_demos_pool(ms)


class AddDemosPool(MultiStreamOperator):
    demos_pool: List[Dict[str, Any]]
    demos_pool_field_name: str = constants.demos_pool_field

    def process(self, multi_stream: MultiStream) -> MultiStream:
        set_demos_pool = Set(fields={self.demos_pool_field_name: self.demos_pool})
        return set_demos_pool(multi_stream)


class DatasetRecipe(SourceSequentialOperator):
    """This class represents a standard recipe for data processing and preparation.

    This class can be used to prepare a recipe.
    with all necessary steps, refiners and renderers included. It allows to set various
    parameters and steps in a sequential manner for preparing the recipe.

    Args:
        card (TaskCard):
            TaskCard object associated with the recipe.
        template (Template, optional):
            Template object to be used for the recipe.
        system_prompt (SystemPrompt, optional):
            SystemPrompt object to be used for the recipe.
        loader_limit (int, optional):
            Specifies the maximum number of instances per stream to be returned from the loader (used to reduce loading time in large datasets)
        format (SystemFormat, optional):
            SystemFormat object to be used for the recipe.
        metrics (List[str]):
            list of catalog metrics to use with this recipe.
        postprocessors (List[str]):
            list of catalog processors to apply at post processing. (Not recommended to use from here)
        group_by (List[Union[str, List[str]]]):
            list of task_data or metadata keys to group global scores by.
        train_refiner (StreamRefiner, optional):
            Train refiner to be used in the recipe.
        max_train_instances (int, optional):
            Maximum training instances for the refiner.
        validation_refiner (StreamRefiner, optional):
            Validation refiner to be used in the recipe.
        max_validation_instances (int, optional):
            Maximum validation instances for the refiner.
        test_refiner (StreamRefiner, optional):
            Test refiner to be used in the recipe.
        max_test_instances (int, optional):
            Maximum test instances for the refiner.
        demos_pool_size (int, optional):
            Size of the demos pool. -1 for taking the whole of stream 'demos_taken_from'.
        demos_pool(List[Dict[str, Any]], optional):
            a list of instances to make the demos_pool
        num_demos (int, optional):
            Number of demos to add to each instance, to become part of the source to be generated for this instance.
        demos_taken_from (str, optional):
            Specifies the stream from where the demos are taken. Default is "train".
        demos_field (str, optional):
            Field name for demos. Default is "demos".
            The num_demos demos selected for an instance are stored in this field of that instance.
        demos_pool_field_name (str, optional):
            field name to maintain the demos_pool, until sampled from, in order to make the demos.
            Defaults to constants.demos_pool_field.
        demos_removed_from_data (bool, optional):
            whether to remove the demos taken to demos_pool from the source data, Default is True
        sampler (Sampler, optional):
            The Sampler used to select the demonstrations when num_demos > 0.
        skip_demoed_instances (bool, optional):
            whether to skip pushing demos to an instance whose demos_field is
            already populated. Defaults to False.
        steps (List[StreamingOperator], optional):
            List of StreamingOperator objects to be used in the recipe.
        augmentor (Augmentor) :
            Augmentor to be used to pseudo randomly augment the source text
        instruction_card_index (int, optional):
            Index of instruction card to be used for preparing the recipe.
        template_card_index (int, optional):
            Index of template card to be used for preparing the recipe.

    Methods:
        prepare():
            This overridden method is used for preparing the recipe
            by arranging all the steps, refiners, and renderers in a sequential manner.

    Raises:
        AssertionError:
            If both template and template_card_index are specified at the same time.
    """

    # Base parameters
    card: TaskCard = None
    task: Task = None
    template: Union[Template, List[Template], TemplatesList] = None
    system_prompt: SystemPrompt = Field(default_factory=EmptySystemPrompt)
    format: Format = None
    serializer: Union[SingleTypeSerializer, List[SingleTypeSerializer]] = None

    # Additional parameters
    template_card_index: int = NonPositionalField(default=None)
    metrics: List[str] = NonPositionalField(default=None)
    postprocessors: List[str] = NonPositionalField(default=None)

    group_by: List[Union[str, List[str]]] = []

    loader_limit: int = None

    max_train_instances: int = None
    max_validation_instances: int = None
    max_test_instances: int = None

    train_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
    validation_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
    test_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)

    demos_pool_size: int = None
    demos_pool: List[Dict[str, Any]] = None
    num_demos: Optional[Union[int, List[int]]] = 0
    demos_removed_from_data: bool = True
    demos_pool_field_name: str = constants.demos_pool_field

    demos_taken_from: str = "train"
    demos_field: str = constants.demos_field
    sampler: Sampler = None

    # do not push demos to instances whose "demos" field is already populated
    skip_demoed_instances: bool = False

    augmentor: Union[Augmentor, List[Augmentor]] = OptionalField(default=None)

    steps: List[StreamingOperator] = InternalField(default_factory=list)

    # shared class cache
    _demos_pool_cache = LRUCache(max_size=10)

    def before_process_multi_stream(self):
        super().before_process_multi_stream()

    @property
    def max_demos_size(self):
        if isinstance(self.num_demos, list):
            return max(self.num_demos)
        return self.num_demos

    def verify(self):
        super().verify()

        if self.task is None and self.card is None:
            raise ValueError("Set card or task in the recipe")

        if self.card is None and (
            self.num_demos > 0 or self.demos_pool_size is not None
        ):
            raise ValueError(
                "To use num_demos and demos_pool_size in recipe set a card."
            )

        if self.use_demos:
            if self.demos_pool_size is None or self.demos_pool_size < 1:
                raise ValueError(
                    "When using demonstrations both num_demos and demos_pool_size should be assigned with positive integers."
                )
            if self.demos_pool_size < self.max_demos_size + 1:
                raise ValueError(
                    f"num_demos (got: {self.max_demos_size}) should not exceed demos_pool_size - 1 (got: {self.demos_pool_size}), (-1: to always allow filtering of a demo identical to the processed instance)."
                )
            if (
                (not self.demos_pool)
                and (self.demos_pool_size != sys.maxsize)
                and self.loader_limit
                and (self.demos_pool_size > self.loader_limit)
            ):
                raise ValueError(
                    f"demos_pool_size should not exceed loader_limit ({self.loader_limit}), Got demos_pool_size={self.demos_pool_size}"
                )

        if self.loader_limit:
            if self.max_test_instances and self.max_test_instances > self.loader_limit:
                raise ValueError(
                    f"max_test_instances should not exceed loader_limit ({self.loader_limit}), Got max_test_instances={self.max_test_instances}"
                )
            if (
                self.max_validation_instances
                and self.max_validation_instances > self.loader_limit
            ):
                raise ValueError(
                    f"max_validation_instances should not exceed loader_limit ({self.loader_limit}), Got max_validation_instances={self.max_validation_instances}"
                )
            if (
                self.max_train_instances
                and self.max_train_instances > self.loader_limit
            ):
                raise ValueError(
                    f"max_train_instances should not exceed loader_limit ({self.loader_limit}), Got max_train_instances={self.max_train_instances}"
                )
        if self.metrics is not None and not isinstance(self.metrics, List):
            raise ValueError(
                f"metrics must be a list of metrics.  Got metrics = {self.metrics}"
            )
        if self.postprocessors is not None and not isinstance(
            self.postprocessors, List
        ):
            raise ValueError(
                f"post processors must be a list of post processor.  Got postprocessors = {self.postprocessors}"
            )

        if self.format is not None and not isinstance(self.format, Format):
            raise ValueError(
                f"format parameter must be a list of of class derived from Format.  Got format = {self.format}"
            )
        if self.template is None:
            raise ValueError(
                "You must set in the recipe either `template`, `template_card_index`."
            )

        if isinstance(self.template, list):
            for template in self.template:
                self.verify_template(template)
        else:
            self.verify_template(self.template)

        if self.serializer is not None:
            if not isinstance(self.serializer, list):
                self.serializer = [self.serializer]
            self.template.serializer.add_serializers(self.serializer)

    def prepare_refiners(self):
        self.train_refiner.max_instances = self.max_train_instances
        self.train_refiner.apply_to_streams = ["train"]
        self.processing.steps.append(self.train_refiner)

        self.validation_refiner.max_instances = self.max_validation_instances
        self.validation_refiner.apply_to_streams = ["validation"]
        self.processing.steps.append(self.validation_refiner)

        self.test_refiner.max_instances = self.max_test_instances
        self.test_refiner.apply_to_streams = ["test"]
        self.processing.steps.append(self.test_refiner)

    def verify_template(self, template):
        if not isinstance(template, Template):
            raise ValueError(
                f"template argument must be an object of type Template. Got template = {template}"
            )

    def set_pipelines(self):
        self.loading = SequentialOperator(
            __description__="Loading the data from the data source."
        )
        self.metadata = SequentialOperator(
            __description__="Adding metadata (e.g. format, system prompt, template)  "
        )
        self.standardization = SequentialOperator(
            __description__="Standardizing the raw dataset fields to task field definition."
        )

        self.processing = SequentialOperator(
            __description__="Setting task fields (and selecting demos per sample if needed)."
        )
        self.verbalization = SequentialOperator()
        self.verbalization.__description__ = "Verbalizing the input to the model and gold references to the 'source', 'target' and 'references' fields."
        self.finalize = SequentialOperator()
        self.finalize.__description__ = "Adding post processors. Removing intermediate fields. Creating the final output dataset."

        self.steps = [
            self.loading,
            self.metadata,
            self.standardization,
            self.processing,
            self.verbalization,
            self.finalize,
        ]

        self.inference_instance = SequentialOperator()

        self.inference_instance.steps = [
            self.metadata,
            self.processing,
        ]

        self.inference_demos = SourceSequentialOperator()

        self.inference_demos.steps = [
            self.loading,
            self.metadata,
            self.standardization,
        ]

        self.inference = SequentialOperator()

        self.inference.steps = [self.processing, self.verbalization, self.finalize]

    def production_preprocess(self, task_instances):
        ms = MultiStream.from_iterables({constants.inference_stream: task_instances})
        return list(self.metadata(ms)[constants.inference_stream])

    @property
    def has_custom_demos_pool(self):
        return self.demos_pool_size is not None and (
            self.demos_pool_size > 0 or self.demos_pool_size == -1
        )

    @property
    def use_demos(self):
        return self.num_demos is not None and self.max_demos_size > 0

    def produce(self, task_instances):
        """Use the recipe in production to produce model ready query from standard task instance."""
        self.before_process_multi_stream()

        ms = MultiStream.from_iterables({constants.inference_stream: task_instances})
        # does not hurt to set metadata
        # task_instances are assumed to be as if passed through self.standardization
        ms = self.metadata(ms)
        if not self.use_demos:
            # go with task_instances all the way, it does not need other streams:
            ms = self.inference(ms)
            return list(ms[constants.inference_stream])

        streams = self.inference_demos()
        # streams stopped before processing
        # ms is ready to join, it will get the demos from streams
        streams[constants.inference_stream] = ms[constants.inference_stream]
        # multi_stream = MultiStream(streams)
        multi_stream = self.inference(streams)
        return list(multi_stream[constants.inference_stream])

    def reset(self):
        self.reset_pipeline()

    def reset_pipeline(self):
        if self.format is None:
            if settings.default_format is not None:
                self.format, _ = fetch_artifact(settings.default_format)
            else:
                self.format = SystemFormat()

        if self.card and self.card.preprocess_steps is None:
            self.card.preprocess_steps = []

        if self.task is None:
            self.task = self.card.task

        self.set_pipelines()

        if self.card is not None:
            loader = self.card.loader
            if self.loader_limit:
                loader.loader_limit = self.loader_limit
                # logger.info(f"Loader line limit was set to  {self.loader_limit}")
            self.loading.steps.append(loader)

            # This is required in case loader_limit is not enforced by the loader
            if self.loader_limit:
                self.loading.steps.append(
                    StreamRefiner(max_instances=self.loader_limit)
                )

        self.metadata.steps.append(
            Set(
                fields={
                    "recipe_metadata/system_prompt": self.system_prompt,
                    "recipe_metadata/format": self.format,
                }
            )
        )

        if self.card:
            self.standardization.steps.extend(self.card.preprocess_steps)

        self.processing.steps.append(self.task)

        if self.augmentor is not None and not isoftype(self.augmentor, NullAugmentor):
            if (
                self.card.task.augmentable_inputs is None
                or len(self.task.augmentable_inputs) == 0
            ):
                raise UnitxtError(
                    f"You specified augmentor in the recipe but the got task without augmentable_inputs: {self.task}"
                )

            if not isinstance(self.augmentor, list):
                self.augmentor = [self.augmentor]

            for augmentor in self.augmentor:
                augmentor.set_fields(self.card.task.augmentable_inputs)
                self.processing.steps.append(augmentor)

        # for backward compatibility, consume the demos instances even if not pushed into demos field of the ordinary instances,
        # in order to use the very same ordinary instances as in back releases.
        # one example of consume but not used, and indeed skips over a problematic (json-wise) input:
        # prepare/cards/rag/end_to_end/clapnq.py
        if self.has_custom_demos_pool:
            if self.demos_pool:
                self.processing.steps.append(
                    AddDemosPool(
                        demos_pool=self.demos_pool,
                        demos_pool_field_name=self.demos_pool_field_name,
                    )
                )
            else:
                self.processing.steps.append(
                    CreateDemosPool(
                        from_stream=self.demos_taken_from,
                        demos_pool_size=self.demos_pool_size
                        if self.demos_pool is None
                        else None,
                        demos_removed_from_data=self.demos_removed_from_data,
                        to_field=self.demos_pool_field_name,
                    )
                )

        if self.use_demos:
            if self.sampler is None:
                if self.card.sampler is None:
                    raise ValueError(
                        "Unexpected None value for card.sampler. "
                        "To use num_demos > 0, please set a sampler on the TaskCard."
                    )
                self.sampler = self.card.sampler

        self.prepare_refiners()

        if self.use_demos:
            if isinstance(self.num_demos, int):
                self.verbalization.steps.append(
                    ConstantSizeSample(
                        from_field=self.demos_pool_field_name,
                        to_field=self.demos_field,
                        sampler=self.sampler,
                        sample_size=self.num_demos,
                        skip_demoed_instances=self.skip_demoed_instances,
                    )
                )
                self.verbalization.steps.append(
                    Set(
                        fields={
                            "recipe_metadata/num_demos": self.num_demos,
                            "recipe_metadata/demos_pool_size": self.demos_pool_size,
                        }
                    )
                )

            elif isinstance(self.num_demos, list):
                self.verbalization.steps.append(
                    RandomSizeSample(
                        from_field=self.demos_pool_field_name,
                        to_field=self.demos_field,
                        sampler=self.sampler,
                        sample_sizes=self.num_demos,
                        skip_demoed_instances=self.skip_demoed_instances,
                    )
                )
                self.verbalization.steps.append(
                    GetLength(
                        field=constants.demos_field,
                        to_field="recipe_metadata/num_demos",
                    )
                )
                self.verbalization.steps.append(
                    Set(
                        fields={"recipe_metadata/demos_pool_size": self.demos_pool_size}
                    )
                )

            else:
                raise ValueError("num_demos must be int or List[int]")

            if isinstance(self.template, list):
                self.verbalization.steps.append(
                    ApplyRandomTemplate(
                        templates=self.template, demos_field=self.demos_field
                    )
                )
            else:
                self.verbalization.steps.append(
                    ApplySingleTemplate(
                        template=self.template, demos_field=self.demos_field
                    )
                )

        else:
            self.verbalization.steps.append(
                Set(
                    fields={
                        "recipe_metadata/num_demos": 0,
                        "recipe_metadata/demos_pool_size": 0,
                    }
                )
            )
            if isinstance(self.template, list):
                self.verbalization.steps.append(
                    ApplyRandomTemplate(templates=self.template)
                )
            else:
                self.verbalization.steps.append(
                    ApplySingleTemplate(template=self.template)
                )

        self.verbalization.steps.append(self.system_prompt)
        self.verbalization.steps.append(self.format)

        if self.postprocessors is not None:
            self.finalize.steps.append(
                Set(fields={"postprocessors": self.postprocessors})
            )

        if self.metrics is not None:
            self.finalize.steps.append(Set(fields={"metrics": self.metrics}))

        self.finalize.steps.append(FinalizeDataset(group_by=self.group_by))

    @property
    def has_card_templates(self):
        return (
            self.card is not None
            and self.card.templates is not None
            and len(self.card.templates) > 0
        )

    @property
    def has_no_templates(self):
        return self.template_card_index is None and self.template is None

    def prepare(self):
        assert (
            self.template_card_index is None or self.template is None
        ), f"Specify either template ({self.template}) or template_card_index ({self.template_card_index}) but not both"

        if self.has_no_templates:
            if self.has_card_templates:
                if isinstance(self.card.templates, list):
                    self.template_card_index = 0
                else:
                    self.template_card_index = next(iter(self.card.templates.keys()))
                logger.warning(
                    "Template was not specified in recipe, using the first template from the card by default."
                )
            else:
                self.template = self.card.task.default_template

        if self.template is None and self.template_card_index is not None:
            try:
                self.template = self.card.templates[self.template_card_index]
            except Exception as e:
                if isinstance(self.card.templates, dict):
                    options = list(self.card.templates.keys())
                else:
                    options = list(range(0, len(self.card.templates)))
                raise ValueError(
                    f"card_template_index '{self.template_card_index}' is not defined in card. Possible card_template_index options: {options}"
                ) from e

        if self.template is None:
            raise ValueError(
                "No template was specified in the the 'template' or 'template_card_index' recipe arguments, and no default templates are defined the card or task"
            )

        if self.use_demos:
            assert (
                self.demos_pool is not None
                and isoftype(self.demos_pool, List[Dict[str, Any]])
            ) != (
                self.demos_taken_from is not None
                and self.demos_pool_size is not None
                and self.demos_removed_from_data is not None
            ), (
                "The demos_pool must be specified by exactly one of two ways: explicitly, as a list of instances coming through parameter "
                + "'demos_pool', or via parameters 'demos_taken_from', 'demos_pool_size', and 'demos_removed_from_data', "
                + "that together direct its production."
            )

        # now set self.demos_pool_size for the checks done by verify
        if self.demos_pool:
            self.demos_pool_size = len(self.demos_pool)
        if self.demos_pool_size is not None and self.demos_pool_size == -1:
            self.demos_pool_size = sys.maxsize

        if isinstance(self.template, TemplatesList):
            self.template = self.template.items

        self.reset_pipeline()


@deprecation(version="2.0.0", alternative=DatasetRecipe)
class BaseRecipe(DatasetRecipe):
    pass


@deprecation(version="2.0.0", alternative=DatasetRecipe)
class StandardRecipeWithIndexes(DatasetRecipe):
    pass


@deprecation(version="2.0.0", alternative=DatasetRecipe)
class StandardRecipe(DatasetRecipe):
    pass