File size: 17,231 Bytes
4577f71 df3c5b3 4577f71 df3c5b3 4577f71 df3c5b3 4577f71 df3c5b3 4577f71 df3c5b3 4577f71 df3c5b3 5ae215a df3c5b3 5ae215a df3c5b3 5ae215a df3c5b3 5ae215a df3c5b3 5ae215a df3c5b3 4577f71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
"""This section describes unitxt operators for structured data.
These operators are specialized in handling structured data like tables.
For tables, expected input format is:
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
For triples, expected input format is:
[[ "subject1", "relation1", "object1" ], [ "subject1", "relation2", "object2"]]
For key-value pairs, expected input format is:
{"key1": "value1", "key2": value2, "key3": "value3"}
------------------------
"""
import json
import random
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import (
Any,
Dict,
List,
Optional,
)
import pandas as pd
from .dict_utils import dict_get
from .operators import FieldOperator, StreamInstanceOperator
class SerializeTable(ABC, FieldOperator):
"""TableSerializer converts a given table into a flat sequence with special symbols.
Output format varies depending on the chosen serializer. This abstract class defines structure of a typical table serializer that any concrete implementation should follow.
"""
# main method to serialize a table
@abstractmethod
def serialize_table(self, table_content: Dict) -> str:
pass
# method to process table header
def process_header(self, header: List):
pass
# method to process a table row
def process_row(self, row: List, row_index: int):
pass
# Concrete classes implementing table serializers
class SerializeTableAsIndexedRowMajor(SerializeTable):
"""Indexed Row Major Table Serializer.
Commonly used row major serialization format.
Format: col : col1 | col2 | col 3 row 1 : val1 | val2 | val3 | val4 row 2 : val1 | ...
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.serialize_table(table_content=table_input)
# main method that processes a table
# table_content must be in the presribed input format
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header) + " "
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i) + " "
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names separated by '|' symbol
def process_header(self, header: List):
return "col : " + " | ".join(header)
# serialize a table row into a string containing the list of cell values separated by '|'
def process_row(self, row: List, row_index: int):
serialized_row_str = ""
row_cell_values = [
str(value) if isinstance(value, (int, float)) else value for value in row
]
serialized_row_str += " | ".join(row_cell_values)
return f"row {row_index} : {serialized_row_str}"
class SerializeTableAsMarkdown(SerializeTable):
"""Markdown Table Serializer.
Markdown table format is used in GitHub code primarily.
Format:
|col1|col2|col3|
|---|---|---|
|A|4|1|
|I|2|1|
...
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.serialize_table(table_content=table_input)
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header)
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i)
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names
def process_header(self, header: List):
header_str = "|{}|\n".format("|".join(header))
header_str += "|{}|\n".format("|".join(["---"] * len(header)))
return header_str
# serialize a table row into a string containing the list of cell values
def process_row(self, row: List, row_index: int):
row_str = ""
row_str += "|{}|\n".format("|".join(str(cell) for cell in row))
return row_str
class SerializeTableAsDFLoader(SerializeTable):
"""DFLoader Table Serializer.
Pandas dataframe based code snippet format serializer.
Format(Sample):
pd.DataFrame({
"name" : ["Alex", "Diana", "Donald"],
"age" : [26, 34, 39]
},
index=[0,1,2])
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.serialize_table(table_content=table_input)
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Create a pandas DataFrame
df = pd.DataFrame(rows, columns=header)
# Generate output string in the desired format
data_dict = df.to_dict(orient="list")
return (
"pd.DataFrame({\n"
+ json.dumps(data_dict)
+ "},\nindex="
+ str(list(range(len(rows))))
+ ")"
)
class SerializeTableAsJson(SerializeTable):
"""JSON Table Serializer.
Json format based serializer.
Format(Sample):
{
"0":{"name":"Alex","age":26},
"1":{"name":"Diana","age":34},
"2":{"name":"Donald","age":39}
}
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.serialize_table(table_content=table_input)
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Generate output dictionary
output_dict = {}
for i, row in enumerate(rows):
output_dict[i] = {header[j]: value for j, value in enumerate(row)}
# Convert dictionary to JSON string
return json.dumps(output_dict)
# truncate cell value to maximum allowed length
def truncate_cell(cell_value, max_len):
if cell_value is None:
return None
if isinstance(cell_value, int) or isinstance(cell_value, float):
return None
if cell_value.strip() == "":
return None
if len(cell_value) > max_len:
return cell_value[:max_len]
return None
class TruncateTableCells(StreamInstanceOperator):
"""Limit the maximum length of cell values in a table to reduce the overall length.
Args:
max_length (int) - maximum allowed length of cell values
For tasks that produce a cell value as answer, truncating a cell value should be replicated
with truncating the corresponding answer as well. This has been addressed in the implementation.
"""
max_length: int = 15
table: str = None
text_output: Optional[str] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
table = dict_get(instance, self.table)
answers = []
if self.text_output is not None:
answers = dict_get(instance, self.text_output)
self.truncate_table(table_content=table, answers=answers)
return instance
# truncate table cells
def truncate_table(self, table_content: Dict, answers: Optional[List]):
cell_mapping = {}
# One row at a time
for row in table_content.get("rows", []):
for i, cell in enumerate(row):
truncated_cell = truncate_cell(cell, self.max_length)
if truncated_cell is not None:
cell_mapping[cell] = truncated_cell
row[i] = truncated_cell
# Update values in answer list to truncated values
if answers is not None:
for i, case in enumerate(answers):
answers[i] = cell_mapping.get(case, case)
class TruncateTableRows(FieldOperator):
"""Limits table rows to specified limit by removing excess rows via random selection.
Args:
rows_to_keep (int) - number of rows to keep.
"""
rows_to_keep: int = 10
def process_value(self, table: Any) -> Any:
return self.truncate_table_rows(table_content=table)
def truncate_table_rows(self, table_content: Dict):
# Get rows from table
rows = table_content.get("rows", [])
num_rows = len(rows)
# if number of rows are anyway lesser, return.
if num_rows <= self.rows_to_keep:
return table_content
# calculate number of rows to delete, delete them
rows_to_delete = num_rows - self.rows_to_keep
# Randomly select rows to be deleted
deleted_rows_indices = random.sample(range(len(rows)), rows_to_delete)
remaining_rows = [
row for i, row in enumerate(rows) if i not in deleted_rows_indices
]
table_content["rows"] = remaining_rows
return table_content
class SerializeTableRowAsText(StreamInstanceOperator):
"""Serializes a table row as text.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + " is " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTableRowAsList(StreamInstanceOperator):
"""Serializes a table row as list.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + ": " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTriples(FieldOperator):
"""Serializes triples into a flat sequence.
Sample input in expected format:
[[ "First Clearing", "LOCATION", "On NYS 52 1 Mi. Youngsville" ], [ "On NYS 52 1 Mi. Youngsville", "CITY_OR_TOWN", "Callicoon, New York"]]
Sample output:
First Clearing : LOCATION : On NYS 52 1 Mi. Youngsville | On NYS 52 1 Mi. Youngsville : CITY_OR_TOWN : Callicoon, New York
"""
def process_value(self, tripleset: Any) -> Any:
return self.serialize_triples(tripleset)
def serialize_triples(self, tripleset) -> str:
return " | ".join(
f"{subj} : {rel.lower()} : {obj}" for subj, rel, obj in tripleset
)
class SerializeKeyValPairs(FieldOperator):
"""Serializes key, value pairs into a flat sequence.
Sample input in expected format: {"name": "Alex", "age": 31, "sex": "M"}
Sample output: name is Alex, age is 31, sex is M
"""
def process_value(self, kvpairs: Any) -> Any:
return self.serialize_kvpairs(kvpairs)
def serialize_kvpairs(self, kvpairs) -> str:
serialized_str = ""
for key, value in kvpairs.items():
serialized_str += f"{key} is {value}, "
# Remove the trailing comma and space then return
return serialized_str[:-2]
class ListToKeyValPairs(StreamInstanceOperator):
"""Maps list of keys and values into key:value pairs.
Sample input in expected format: {"keys": ["name", "age", "sex"], "values": ["Alex", 31, "M"]}
Sample output: {"name": "Alex", "age": 31, "sex": "M"}
"""
fields: List[str]
to_field: str
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
keylist = dict_get(instance, self.fields[0])
valuelist = dict_get(instance, self.fields[1])
output_dict = {}
for key, value in zip(keylist, valuelist):
output_dict[key] = value
instance[self.to_field] = output_dict
return instance
class ConvertTableColNamesToSequential(FieldOperator):
"""Replaces actual table column names with static sequential names like col_0, col_1,...
Sample input:
{
"header": ["name", "age"],
"rows": [["Alex", 21], ["Donald", 34]]
}
Sample output:
{
"header": ["col_0", "col_1"],
"rows": [["Alex", 21], ["Donald", 34]]
}
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.replace_header(table_content=table_input)
# replaces header with sequential column names
def replace_header(self, table_content: Dict) -> str:
# Extract header from the dictionary
header = table_content.get("header", [])
assert header, "Input table missing header"
new_header = ["col_" + str(i) for i in range(len(header))]
table_content["header"] = new_header
return table_content
class ShuffleTableRows(FieldOperator):
"""Shuffles the input table rows randomly.
Sample Input:
{
"header": ["name", "age"],
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
}
Sample Output:
{
"header": ["name", "age"],
"rows": [["Donald", 39], ["Raj", 34], ["Alex", 26]],
}
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.shuffle_rows(table_content=table_input)
# shuffles table rows randomly
def shuffle_rows(self, table_content: Dict) -> str:
# extract header & rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# shuffle rows
random.shuffle(rows)
table_content["rows"] = rows
return table_content
class ShuffleTableColumns(FieldOperator):
"""Shuffles the table columns randomly.
Sample Input:
{
"header": ["name", "age"],
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
}
Sample Output:
{
"header": ["age", "name"],
"rows": [[26, "Alex"], [34, "Raj"], [39, "Donald"]],
}
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.shuffle_columns(table_content=table_input)
# shuffles table columns randomly
def shuffle_columns(self, table_content: Dict) -> str:
# extract header & rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# shuffle the indices first
indices = list(range(len(header)))
random.shuffle(indices) #
# shuffle the header & rows based on that indices
shuffled_header = [header[i] for i in indices]
shuffled_rows = [[row[i] for i in indices] for row in rows]
table_content["header"] = shuffled_header
table_content["rows"] = shuffled_rows
return table_content
|