File size: 7,629 Bytes
3157b84 6e6d8af 3157b84 6e6d8af 3157b84 6e6d8af 3157b84 6e6d8af 3157b84 6e6d8af 3157b84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import json
from typing import Any, Dict, Iterable, List, Optional
from datasets import Features, Value
from .dataclass import Dataclass
from .operator import (
MultiStreamOperator,
SequentialOperatorInitilizer,
StreamInitializerOperator,
)
from .operators import (
Apply,
ApplyMetric,
ApplyOperatorsField,
FlattenInstances,
MergeStreams,
SplitByValue,
)
from .register import _reset_env_local_catalogs, register_all_artifacts
from .schema import UNITXT_DATASET_SCHEMA
from .settings_utils import get_settings
from .stream import MultiStream, Stream
class MultiStreamScoreMean(MultiStreamOperator):
def aggegate_results(self, multi_stream: MultiStream):
scores = []
for stream in multi_stream.values():
instance = stream.peek()
scores.append(instance["score"]["global"]["score"])
from statistics import mean
return mean(scores)
def spread_results(self, stream: Stream, score: float):
for instance in stream:
instance["score"]["global"]["groups_mean_score"] = score
yield instance
def spread_results_one_stream(self, stream: Stream):
for instance in stream:
instance["score"]["global"]["groups_mean_score"] = instance["score"][
"global"
]["score"]
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
result = {}
# optimization in to avoid double calculation of metrics
# when aggregating results, if there is only one stream.
if len(multi_stream) == 1:
for stream_name, stream in multi_stream.items():
result[stream_name] = Stream(
self.spread_results_one_stream, gen_kwargs={"stream": stream}
)
return MultiStream(result)
mean_score = self.aggegate_results(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
result[stream_name] = Stream(
self.spread_results, gen_kwargs={"stream": stream, "score": mean_score}
)
return MultiStream(result)
class FromPredictionsAndOriginalData(StreamInitializerOperator):
def zip(self, predictions, references):
for prediction, original in zip(predictions, references):
yield {**original, "prediction": prediction}
def process(
self, predictions: List[str], references: Iterable, split_name: str = "all"
) -> MultiStream:
return MultiStream(
{
split_name: Stream(
self.zip,
gen_kwargs={"predictions": predictions, "references": references},
)
}
)
# The task_data field in the schema is defined as
# Sequence({"key": Value(dtype="string"), "value": Value("string")})
# When receiving instances from this scheme, the keys and values are returned as two separate
# lists, and are converted to a dictionary.
class MetricRecipe(SequentialOperatorInitilizer):
calc_confidence_intervals: bool = True
def prepare(self):
register_all_artifacts()
self.steps = [
FromPredictionsAndOriginalData(),
Apply(
"task_data",
function="json.loads",
to_field="task_data",
),
ApplyOperatorsField(
operators_field="postprocessors",
),
SplitByValue(["group"]),
ApplyMetric(
"metrics",
calc_confidence_intervals=self.calc_confidence_intervals,
),
MultiStreamScoreMean(),
MergeStreams(),
]
UNITXT_METRIC_SCHEMA = Features(
{"predictions": Value("string"), "references": dict(UNITXT_DATASET_SCHEMA)}
)
def _compute(
predictions: List[str],
references: Iterable,
flatten: bool = False,
split_name: str = "all",
calc_confidence_intervals: bool = True,
):
_reset_env_local_catalogs()
register_all_artifacts()
recipe = MetricRecipe(calc_confidence_intervals=calc_confidence_intervals)
multi_stream = recipe(
predictions=predictions, references=references, split_name=split_name
)
if flatten:
operator = FlattenInstances()
multi_stream = operator(multi_stream)
stream = multi_stream[split_name]
return list(stream)
"""
The API of a metric service:
- MetricRequest: A single input request to the metrics service.
- MetricResponse: A response returned from a metrics service.
"""
class InstanceInput(Dataclass):
"""A single instance inputted to a metric service."""
prediction: Any
references: List[Any]
additional_inputs: Optional[Dict] = None
class MetricRequest(Dataclass):
"""A request to a metrics service, includes a list of input instances."""
instance_inputs: List[InstanceInput]
class MetricResponse(Dataclass):
"""A response produced by a metrics service, includes the computed scores."""
# A list of instance score dictionaries. Each dictionary contains the
# score names and score values for a single instance.
instances_scores: List[Dict[str, Any]]
# The global scores dictionary, containing global score names and values.
# These are scores computed over the entire set of input instances, e.g.
# an average over a score computed per instance.
global_score: Dict[str, Any]
"""
Functionality for loading the remote metrics configuration from local environment variables.
"""
# A list of metrics to be executed remotely.
# For example: '["metrics.rag.context_relevance","metrics.rag.bert_k_precision"]'
# This value should be a valid json list
UNITXT_REMOTE_METRICS = "UNITXT_REMOTE_METRICS"
# The remote endpoint on which the remote metrics are available.
# For example, 'http://127.0.0.1:8000/compute'
UNITXT_REMOTE_METRICS_ENDPOINT = "UNITXT_REMOTE_METRICS_ENDPOINT"
def get_remote_metrics_names() -> List[str]:
"""Load the remote metrics names from an environment variable.
Returns:
List[str] - names of metrics to be executed remotely.
"""
settings = get_settings()
remote_metrics = settings.remote_metrics
if remote_metrics:
remote_metrics = json.loads(remote_metrics)
if not isinstance(remote_metrics, list):
raise RuntimeError(
f"Unexpected value {remote_metrics} for the '{UNITXT_REMOTE_METRICS}' environment variable. "
f"The value is expected to be a list of metric names in json format."
)
for remote_metric in remote_metrics:
if not isinstance(remote_metric, str):
raise RuntimeError(
f"Unexpected value {remote_metric} within the '{UNITXT_REMOTE_METRICS}' environment variable. "
f"The value is expected to be a string but its type is {type(remote_metric)}."
)
return remote_metrics
def get_remote_metrics_endpoint() -> str:
"""Load the remote metrics endpoint from an environment variable.
Returns:
str - The remote endpoint on which the remote metrics are available.
"""
settings = get_settings()
try:
remote_metrics_endpoint = settings.remote_metrics_endpoint
except AttributeError as e:
raise RuntimeError(
f"Unexpected None value for '{UNITXT_REMOTE_METRICS_ENDPOINT}'. "
f"Running remote metrics requires defining an "
f"endpoint in the environment variable '{UNITXT_REMOTE_METRICS_ENDPOINT}'."
) from e
return remote_metrics_endpoint
|