File size: 16,071 Bytes
f786e3b 61747f5 f786e3b 7e3fef8 cb669f3 d79bb48 cb669f3 64c3236 e3ab2c6 9564cbf e3ab2c6 cb669f3 e3ab2c6 64c3236 d79bb48 26a73a2 18ed1aa 9564cbf 26a73a2 d79bb48 18ed1aa e3ab2c6 7e3fef8 64c3236 f786e3b 7e3fef8 87d48ff e3ab2c6 382d4f4 e3ab2c6 7e3fef8 382d4f4 64c3236 382d4f4 64c3236 e3ab2c6 382d4f4 d79bb48 87d48ff 61747f5 87d48ff 382d4f4 64c3236 7e3fef8 382d4f4 d79bb48 18ed1aa 6b15472 18ed1aa 61747f5 18ed1aa 64c3236 7e3fef8 e3ab2c6 382d4f4 e3ab2c6 cb669f3 9564cbf 382d4f4 9564cbf 87d48ff 382d4f4 9564cbf 382d4f4 9564cbf 87d48ff 9564cbf 7e3fef8 382d4f4 7e3fef8 9564cbf d79bb48 64c3236 d79bb48 87d48ff d79bb48 cb669f3 7e3fef8 d79bb48 64c3236 cb669f3 d79bb48 cb669f3 7e3fef8 cb669f3 7e3fef8 382d4f4 7e3fef8 382d4f4 7e3fef8 d79bb48 382d4f4 7e3fef8 cb669f3 7e3fef8 d79bb48 cb669f3 7e3fef8 cb669f3 d79bb48 cb669f3 7e3fef8 cb669f3 7e3fef8 cb669f3 87d48ff cb669f3 64c3236 cb669f3 56803e8 382d4f4 56803e8 d79bb48 7e3fef8 18ed1aa d79bb48 cb669f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
"""This section describes unitxt loaders.
Loaders: Generators of Unitxt Multistreams from existing date sources
==============================================================
Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
post-processing the model's output, preparing it for any given evaluator.
Through that journey, the data advances in the form of Unitxt Multistream, undergoing a sequential application
of various off the shelf operators (i.e, picked from Unitxt catalog), or operators easily implemented by inheriting.
The journey starts by a Unitxt Loeader bearing a Multistream from the given datasource.
A loader, therefore, is the first item on any Unitxt Recipe.
Unitxt catalog contains several loaders for the most popular datasource formats.
All these loaders inherit from Loader, and hence, implementing a loader to expand over a new type of datasource, is
straight forward.
Operators in Unitxt catalog:
LoadHF : loads from Huggingface dataset.
LoadCSV: loads from csv (comma separated value) files
LoadFromKaggle: loads datasets from the kaggle.com community site
LoadFromIBMCloud: loads a dataset from the IBM cloud.
------------------------
"""
import itertools
import os
import tempfile
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Dict, List, Mapping, Optional, Sequence, Union
import pandas as pd
from datasets import load_dataset as hf_load_dataset
from tqdm import tqdm
from .dataclass import InternalField, OptionalField
from .logging_utils import get_logger
from .operator import SourceOperator
from .settings_utils import get_settings
from .stream import MultiStream, Stream
logger = get_logger()
settings = get_settings()
class Loader(SourceOperator):
# The loader_limit an optional parameter used to control the maximum number of instances to load from the the source.
# It is usually provided to the loader via the recipe (see standard.py)
# The loader can use this value to limit the amount of data downloaded from the source
# to reduce loading time. However, this may not always be possible, so the
# loader may ignore this. In any case, the recipe, will limit the number of instances in the returned
# stream, after load is complete.
loader_limit: int = None
streaming: bool = False
def get_limit(self):
if settings.global_loader_limit is not None and self.loader_limit is not None:
return min(int(settings.global_loader_limit), self.loader_limit)
if settings.global_loader_limit is not None:
return int(settings.global_loader_limit)
return self.loader_limit
def get_limiter(self):
if settings.global_loader_limit is not None and self.loader_limit is not None:
if int(settings.global_loader_limit) > self.loader_limit:
return f"{self.__class__.__name__}.loader_limit"
return "unitxt.settings.global_loader_limit"
if settings.global_loader_limit is not None:
return "unitxt.settings.global_loader_limit"
return f"{self.__class__.__name__}.loader_limit"
def log_limited_loading(self):
logger.info(
f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
)
class LoadHF(Loader):
path: str
name: Optional[str] = None
data_dir: Optional[str] = None
split: Optional[str] = None
data_files: Optional[
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
] = None
streaming: bool = True
filtering_lambda: Optional[str] = None
_cache: dict = InternalField(default=None)
requirements_list: List[str] = OptionalField(default_factory=list)
def verify(self):
for requirement in self.requirements_list:
if requirement not in self._requirements_list:
self._requirements_list.append(requirement)
super().verify()
def filtered_load(self, dataset):
logger.info(f"\nLoading filtered by: {self.filtering_lambda};")
return MultiStream(
{
name: dataset[name].filter(eval(self.filtering_lambda))
for name in dataset
}
)
def stream_dataset(self):
if self._cache is None:
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
try:
dataset = hf_load_dataset(
self.path,
name=self.name,
data_dir=self.data_dir,
data_files=self.data_files,
streaming=self.streaming,
cache_dir=None if self.streaming else dir_to_be_deleted,
split=self.split,
trust_remote_code=settings.allow_unverified_code,
)
except ValueError as e:
if "trust_remote_code" in str(e):
raise ValueError(
f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
) from e
if self.filtering_lambda is not None:
dataset = self.filtered_load(dataset)
if self.split is not None:
dataset = {self.split: dataset}
self._cache = dataset
else:
dataset = self._cache
return dataset
def load_dataset(self):
if self._cache is None:
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
try:
dataset = hf_load_dataset(
self.path,
name=self.name,
data_dir=self.data_dir,
data_files=self.data_files,
streaming=False,
keep_in_memory=True,
cache_dir=dir_to_be_deleted,
split=self.split,
trust_remote_code=settings.allow_unverified_code,
)
except ValueError as e:
if "trust_remote_code" in str(e):
raise ValueError(
f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
) from e
if self.filtering_lambda is not None:
dataset = self.filtered_load(dataset)
if self.split is None:
for split in dataset.keys():
dataset[split] = dataset[split].to_iterable_dataset()
else:
dataset = {self.split: dataset}
self._cache = dataset
else:
dataset = self._cache
return dataset
def split_limited_load(self, split_name):
yield from itertools.islice(self._cache[split_name], self.get_limit())
def limited_load(self):
self.log_limited_loading()
return MultiStream(
{
name: Stream(
generator=self.split_limited_load, gen_kwargs={"split_name": name}
)
for name in self._cache.keys()
}
)
def process(self):
try:
dataset = self.stream_dataset()
except (
NotImplementedError
): # streaming is not supported for zipped files so we load without streaming
dataset = self.load_dataset()
if self.get_limit() is not None:
return self.limited_load()
return MultiStream.from_iterables(dataset)
class LoadCSV(Loader):
files: Dict[str, str]
chunksize: int = 1000
_cache = InternalField(default_factory=dict)
loader_limit: int = None
streaming: bool = True
def stream_csv(self, file):
if self.get_limit() is not None:
self.log_limited_loading()
chunksize = min(self.get_limit(), self.chunksize)
else:
chunksize = self.chunksize
row_count = 0
for chunk in pd.read_csv(file, chunksize=chunksize):
for _, row in chunk.iterrows():
if self.get_limit() is not None and row_count >= self.get_limit():
return
yield row.to_dict()
row_count += 1
def load_csv(self, file):
if file not in self._cache:
if self.get_limit() is not None:
self.log_limited_loading()
self._cache[file] = pd.read_csv(file, nrows=self.get_limit()).to_dict(
"records"
)
else:
self._cache[file] = pd.read_csv(file).to_dict("records")
yield from self._cache[file]
def process(self):
if self.streaming:
return MultiStream(
{
name: Stream(generator=self.stream_csv, gen_kwargs={"file": file})
for name, file in self.files.items()
}
)
return MultiStream(
{
name: Stream(generator=self.load_csv, gen_kwargs={"file": file})
for name, file in self.files.items()
}
)
class MissingKaggleCredentialsError(ValueError):
pass
# TODO write how to obtain kaggle credentials
class LoadFromKaggle(Loader):
url: str
_requirements_list: List[str] = ["opendatasets"]
def verify(self):
super().verify()
if not os.path.isfile("kaggle.json"):
raise MissingKaggleCredentialsError(
"Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
)
if self.streaming:
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
def prepare(self):
super().prepare()
from opendatasets import download
self.downloader = download
def process(self):
with TemporaryDirectory() as temp_directory:
self.downloader(self.url, temp_directory)
dataset = hf_load_dataset(temp_directory, streaming=False)
return MultiStream.from_iterables(dataset)
class LoadFromIBMCloud(Loader):
endpoint_url_env: str
aws_access_key_id_env: str
aws_secret_access_key_env: str
bucket_name: str
data_dir: str = None
# Can be either:
# 1. a list of file names, the split of each file is determined by the file name pattern
# 2. Mapping: split -> file_name, e.g. {"test" : "test.json", "train": "train.json"}
# 3. Mapping: split -> file_names, e.g. {"test" : ["test1.json", "test2.json"], "train": ["train.json"]}
data_files: Union[Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
caching: bool = True
_requirements_list: List[str] = ["ibm_boto3"]
def _download_from_cos(self, cos, bucket_name, item_name, local_file):
logger.info(f"Downloading {item_name} from {bucket_name} COS")
try:
response = cos.Object(bucket_name, item_name).get()
size = response["ContentLength"]
body = response["Body"]
except Exception as e:
raise Exception(
f"Unabled to access {item_name} in {bucket_name} in COS", e
) from e
if self.get_limit() is not None:
if item_name.endswith(".jsonl"):
first_lines = list(
itertools.islice(body.iter_lines(), self.get_limit())
)
with open(local_file, "wb") as downloaded_file:
for line in first_lines:
downloaded_file.write(line)
downloaded_file.write(b"\n")
logger.info(
f"\nDownload successful limited to {self.get_limit()} lines"
)
return
progress_bar = tqdm(total=size, unit="iB", unit_scale=True)
def upload_progress(chunk):
progress_bar.update(chunk)
try:
cos.Bucket(bucket_name).download_file(
item_name, local_file, Callback=upload_progress
)
logger.info("\nDownload Successful")
except Exception as e:
raise Exception(
f"Unabled to download {item_name} in {bucket_name}", e
) from e
def prepare(self):
super().prepare()
self.endpoint_url = os.getenv(self.endpoint_url_env)
self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
root_dir = os.getenv("UNITXT_IBM_COS_CACHE", None) or os.getcwd()
self.cache_dir = os.path.join(root_dir, "ibmcos_datasets")
if not os.path.exists(self.cache_dir):
Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
def verify(self):
super().verify()
assert (
self.endpoint_url is not None
), f"Please set the {self.endpoint_url_env} environmental variable"
assert (
self.aws_access_key_id is not None
), f"Please set {self.aws_access_key_id_env} environmental variable"
assert (
self.aws_secret_access_key is not None
), f"Please set {self.aws_secret_access_key_env} environmental variable"
if self.streaming:
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
def process(self):
import ibm_boto3
cos = ibm_boto3.resource(
"s3",
aws_access_key_id=self.aws_access_key_id,
aws_secret_access_key=self.aws_secret_access_key,
endpoint_url=self.endpoint_url,
)
local_dir = os.path.join(
self.cache_dir,
self.bucket_name,
self.data_dir,
f"loader_limit_{self.get_limit()}",
)
if not os.path.exists(local_dir):
Path(local_dir).mkdir(parents=True, exist_ok=True)
if isinstance(self.data_files, Mapping):
data_files_names = list(self.data_files.values())
if not isinstance(data_files_names[0], str):
data_files_names = list(itertools.chain(*data_files_names))
else:
data_files_names = self.data_files
for data_file in data_files_names:
local_file = os.path.join(local_dir, data_file)
if not self.caching or not os.path.exists(local_file):
# Build object key based on parameters. Slash character is not
# allowed to be part of object key in IBM COS.
object_key = (
self.data_dir + "/" + data_file
if self.data_dir is not None
else data_file
)
with tempfile.NamedTemporaryFile() as temp_file:
# Download to a temporary file in same file partition, and then do an atomic move
self._download_from_cos(
cos,
self.bucket_name,
object_key,
local_dir + "/" + os.path.basename(temp_file.name),
)
os.rename(
local_dir + "/" + os.path.basename(temp_file.name),
local_dir + "/" + data_file,
)
if isinstance(self.data_files, list):
dataset = hf_load_dataset(local_dir, streaming=False)
else:
dataset = hf_load_dataset(
local_dir, streaming=False, data_files=self.data_files
)
return MultiStream.from_iterables(dataset)
|