File size: 11,860 Bytes
df3c5b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
"""This section describes unitxt operators for tabular data.
These operators are specialized in handling tabular data.
Input table format is assumed as:
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
------------------------
"""
import random
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import (
Any,
Dict,
List,
Optional,
)
from .dict_utils import dict_get
from .operators import FieldOperator, StreamInstanceOperator
class SerializeTable(ABC, FieldOperator):
"""TableSerializer converts a given table into a flat sequence with special symbols.
Output format varies depending on the chosen serializer. This abstract class defines structure of a typical table serializer that any concrete implementation should follow.
"""
# main method to serialize a table
@abstractmethod
def serialize_table(self, table_content: Dict) -> str:
pass
# method to process table header
@abstractmethod
def process_header(self, header: List):
pass
# method to process a table row
@abstractmethod
def process_row(self, row: List, row_index: int):
pass
# Concrete classes implementing table serializers
class SerializeTableAsIndexedRowMajor(SerializeTable):
"""Indexed Row Major Table Serializer.
Commonly used row major serialization format.
Format: col : col1 | col2 | col 3 row 1 : val1 | val2 | val3 | val4 row 2 : val1 | ...
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.serialize_table(table_content=table_input)
# main method that processes a table
# table_content must be in the presribed input format
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header) + " "
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i) + " "
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names separated by '|' symbol
def process_header(self, header: List):
return "col : " + " | ".join(header)
# serialize a table row into a string containing the list of cell values separated by '|'
def process_row(self, row: List, row_index: int):
serialized_row_str = ""
row_cell_values = [
str(value) if isinstance(value, (int, float)) else value for value in row
]
serialized_row_str += " | ".join(row_cell_values)
return f"row {row_index} : {serialized_row_str}"
class SerializeTableAsMarkdown(SerializeTable):
"""Markdown Table Serializer.
Markdown table format is used in GitHub code primarily.
Format:
|col1|col2|col3|
|---|---|---|
|A|4|1|
|I|2|1|
...
"""
def process_value(self, table: Any) -> Any:
table_input = deepcopy(table)
return self.serialize_table(table_content=table_input)
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header)
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i)
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names
def process_header(self, header: List):
header_str = "|{}|\n".format("|".join(header))
header_str += "|{}|\n".format("|".join(["---"] * len(header)))
return header_str
# serialize a table row into a string containing the list of cell values
def process_row(self, row: List, row_index: int):
row_str = ""
row_str += "|{}|\n".format("|".join(str(cell) for cell in row))
return row_str
# truncate cell value to maximum allowed length
def truncate_cell(cell_value, max_len):
if cell_value is None:
return None
if isinstance(cell_value, int) or isinstance(cell_value, float):
return None
if cell_value.strip() == "":
return None
if len(cell_value) > max_len:
return cell_value[:max_len]
return None
class TruncateTableCells(StreamInstanceOperator):
"""Limit the maximum length of cell values in a table to reduce the overall length.
Args:
max_length (int) - maximum allowed length of cell values
For tasks that produce a cell value as answer, truncating a cell value should be replicated
with truncating the corresponding answer as well. This has been addressed in the implementation.
"""
max_length: int = 15
table: str = None
text_output: Optional[str] = None
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
table = dict_get(instance, self.table, use_dpath=self.use_query)
answers = []
if self.text_output is not None:
answers = dict_get(instance, self.text_output, use_dpath=self.use_query)
self.truncate_table(table_content=table, answers=answers)
return instance
# truncate table cells
def truncate_table(self, table_content: Dict, answers: Optional[List]):
cell_mapping = {}
# One row at a time
for row in table_content.get("rows", []):
for i, cell in enumerate(row):
truncated_cell = truncate_cell(cell, self.max_length)
if truncated_cell is not None:
cell_mapping[cell] = truncated_cell
row[i] = truncated_cell
# Update values in answer list to truncated values
if answers is not None:
for i, case in enumerate(answers):
answers[i] = cell_mapping.get(case, case)
class TruncateTableRows(FieldOperator):
"""Limits table rows to specified limit by removing excess rows via random selection.
Args:
rows_to_keep (int) - number of rows to keep.
"""
rows_to_keep: int = 10
def process_value(self, table: Any) -> Any:
return self.truncate_table_rows(table_content=table)
def truncate_table_rows(self, table_content: Dict):
# Get rows from table
rows = table_content.get("rows", [])
num_rows = len(rows)
# if number of rows are anyway lesser, return.
if num_rows <= self.rows_to_keep:
return table_content
# calculate number of rows to delete, delete them
rows_to_delete = num_rows - self.rows_to_keep
# Randomly select rows to be deleted
deleted_rows_indices = random.sample(range(len(rows)), rows_to_delete)
remaining_rows = [
row for i, row in enumerate(rows) if i not in deleted_rows_indices
]
table_content["rows"] = remaining_rows
return table_content
class SerializeTableRowAsText(StreamInstanceOperator):
"""Serializes a table row as text.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field, use_dpath=False)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + " is " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTableRowAsList(StreamInstanceOperator):
"""Serializes a table row as list.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field, use_dpath=False)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + ": " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTriples(FieldOperator):
"""Serializes triples into a flat sequence.
Sample input in expected format:
[[ "First Clearing", "LOCATION", "On NYS 52 1 Mi. Youngsville" ], [ "On NYS 52 1 Mi. Youngsville", "CITY_OR_TOWN", "Callicoon, New York"]]
Sample output:
First Clearing : LOCATION : On NYS 52 1 Mi. Youngsville | On NYS 52 1 Mi. Youngsville : CITY_OR_TOWN : Callicoon, New York
"""
def process_value(self, tripleset: Any) -> Any:
return self.serialize_triples(tripleset)
def serialize_triples(self, tripleset) -> str:
return " | ".join(
f"{subj} : {rel.lower()} : {obj}" for subj, rel, obj in tripleset
)
class SerializeKeyValPairs(FieldOperator):
"""Serializes key, value pairs into a flat sequence.
Sample input in expected format: {"name": "Alex", "age": 31, "sex": "M"}
Sample output: name is Alex, age is 31, sex is M
"""
def process_value(self, kvpairs: Any) -> Any:
return self.serialize_kvpairs(kvpairs)
def serialize_kvpairs(self, kvpairs) -> str:
serialized_str = ""
for key, value in kvpairs.items():
serialized_str += f"{key} is {value}, "
# Remove the trailing comma and space then return
return serialized_str[:-2]
class ListToKeyValPairs(StreamInstanceOperator):
"""Maps list of keys and values into key:value pairs.
Sample input in expected format: {"keys": ["name", "age", "sex"], "values": ["Alex", 31, "M"]}
Sample output: {"name": "Alex", "age": 31, "sex": "M"}
"""
fields: List[str]
to_field: str
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
keylist = dict_get(instance, self.fields[0], use_dpath=self.use_query)
valuelist = dict_get(instance, self.fields[1], use_dpath=self.use_query)
output_dict = {}
for key, value in zip(keylist, valuelist):
output_dict[key] = value
instance[self.to_field] = output_dict
return instance
|