File size: 10,641 Bytes
b7c39fe d292ceb 778ad61 b7c39fe 778ad61 b7c39fe d292ceb 778ad61 b7c39fe d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb 778ad61 d292ceb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from dataclasses import field
from typing import Any, Dict, Generator, Iterable, List, Optional, Union
from .text_utils import nested_tuple_to_string
from .artifact import Artifact, fetch_artifact
from .operator import (
MultiStream,
MultiStreamOperator,
SingleStreamOperator,
SingleStreamReducer,
Stream,
StreamInitializerOperator,
StreamInstanceOperator,
PagedStreamOperator,
)
from .stream import MultiStream, Stream
from .utils import flatten_dict
import random
from .utils import dict_query
class FromIterables(StreamInitializerOperator):
"""
Creates a MultiStream from iterables.
Args:
iterables (Dict[str, Iterable]): A dictionary where each key-value pair represents a stream name and its corresponding iterable.
"""
def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
return MultiStream.from_iterables(iterables)
class MapInstanceValues(StreamInstanceOperator):
"""
Maps values in each instance of a stream based on the provided mappers.
Args:
mappers (Dict[str, Dict[str, str]]): A dictionary where each key-value pair represents a field in the instance and a mapper for that field.
strict (bool): If True, the operator will raise a KeyError if a value is not in its corresponding mapper. If False, unmapped values will be left unchanged. Defaults to True.
"""
mappers: Dict[str, Dict[str, str]]
strict: bool = True
def verify(self):
# make sure the mappers are valid
for key, mapper in self.mappers.items():
assert isinstance(mapper, dict), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
for k, v in mapper.items():
assert isinstance(k, str), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
result = {}
for key, value in instance.items():
str_value = str(value)
if key in self.mappers:
mapper = self.mappers[key]
if self.strict:
value = mapper[str_value]
else:
if str_value in mapper:
value = mapper[str_value]
result[key] = value
return result
class FlattenInstances(StreamInstanceOperator):
"""
Flattens each instance in a stream, making nested dictionary entries into top-level entries.
Args:
parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string.
sep (str): The separator to use when concatenating nested keys. Defaults to "_".
"""
parent_key: str = ""
sep: str = "_"
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep)
class AddFields(StreamInstanceOperator):
"""
Adds specified fields to each instance in a stream.
Args:
fields (Dict[str, object]): The fields to add to each instance.
"""
fields: Dict[str, object]
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
instance.update(self.fields)
return instance
class MapNestedDictValuesByQueries(StreamInstanceOperator):
field_to_query: Dict[str, str]
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
updates = {}
for field, query in self.field_to_query.items():
updates[field] = dict_query(instance, query)
instance.update(updates)
return instance
class ArtifactFetcherMixin:
"""
Provides a way to fetch and cache artifacts in the system.
Args:
cache (Dict[str, Artifact]): A cache for storing fetched artifacts.
"""
cache: Dict[str, Artifact] = {}
@classmethod
def get_artifact(cls, artifact_identifier: str) -> Artifact:
if artifact_identifier not in cls.cache:
artifact, artifactory = fetch_artifact(artifact_identifier)
cls.cache[artifact_identifier] = artifact
return cls.cache[artifact_identifier]
class ApplyValueOperatorsField(StreamInstanceOperator, ArtifactFetcherMixin):
"""
Applies value operators to each instance in a stream based on specified fields.
Args:
value_field (str): The field containing the value to be operated on.
operators_field (str): The field containing the operators to be applied.
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.
"""
value_field: str
operators_field: str
default_operators: List[str] = None
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
operator_names = instance.get(self.operators_field)
if operator_names is None:
assert (
self.default_operators is not None
), f"No operators found in {self.field} field and no default operators provided"
operator_names = self.default_operators
if isinstance(operator_names, str):
operator_names = [operator_names]
for name in operator_names:
operator = self.get_artifact(name)
instance = operator(instance, self.value_field)
return instance
class FilterByValues(SingleStreamOperator):
"""
Filters a stream, yielding only instances that match specified values.
Args:
values (Dict[str, Any]): The values that instances should match to be included in the output.
"""
values: Dict[str, Any]
def process(self, stream: Stream, stream_name: str = None) -> Generator:
for instance in stream:
if all(instance[key] == value for key, value in self.values.items()):
yield instance
class Unique(SingleStreamReducer):
"""
Reduces a stream to unique instances based on specified fields.
Args:
fields (List[str]): The fields that should be unique in each instance.
"""
fields: List[str] = field(default_factory=list)
@staticmethod
def to_tuple(instance: dict, fields: List[str]) -> tuple:
result = []
for field in fields:
value = instance[field]
if isinstance(value, list):
value = tuple(value)
result.append(value)
return tuple(result)
def process(self, stream: Stream) -> Stream:
seen = set()
for instance in stream:
values = self.to_tuple(instance, self.fields)
if values not in seen:
seen.add(values)
return list(seen)
class SplitByValue(MultiStreamOperator):
"""
Splits a MultiStream into multiple streams based on unique values in specified fields.
Args:
fields (List[str]): The fields to use when splitting the MultiStream.
"""
fields: List[str] = field(default_factory=list)
def process(self, multi_stream: MultiStream) -> MultiStream:
uniques = Unique(fields=self.fields)(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
stream_unique_values = uniques[stream_name]
for unique_values in stream_unique_values:
filtering_values = {field: value for field, value in zip(self.fields, unique_values)}
filtered_streams = FilterByValues(values=filtering_values)._process_single_stream(stream)
filtered_stream_name = stream_name + "_" + nested_tuple_to_string(unique_values)
result[filtered_stream_name] = filtered_streams
return MultiStream(result)
class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin):
"""
Applies stream operators to a stream based on specified fields in each instance.
Args:
field (str): The field containing the operators to be applied.
reversed (bool): Whether to apply the operators in reverse order.
"""
field: str
reversed: bool = False
def process(self, stream: Stream, stream_name: str = None) -> Generator:
first_instance = stream.peak()
operators = first_instance.get(self.field, [])
if isinstance(operators, str):
operators = [operators]
if self.reversed:
operators = list(reversed(operators))
for operator_name in operators:
operator = self.get_artifact(operator_name)
assert isinstance(
operator, SingleStreamOperator
), f"Operator {operator_name} must be a SingleStreamOperator"
stream = operator.process(stream)
yield from stream
class AddFieldNamePrefix(StreamInstanceOperator):
"""
Adds a prefix to each field name in each instance of a stream.
Args:
prefix_dict (Dict[str, str]): A dictionary mapping stream names to prefixes.
"""
prefix_dict: Dict[str, str]
def prepare(self):
return super().prepare()
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
return {self.prefix_dict[stream_name] + key: value for key, value in instance.items()}
class MergeStreams(MultiStreamOperator):
"""
Merges multiple streams into a single stream.
Args:
new_stream_name (str): The name of the new stream resulting from the merge.
add_origin_stream_name (bool): Whether to add the origin stream name to each instance.
origin_stream_name_field_name (str): The field name for the origin stream name.
"""
new_stream_name: str = "all"
add_origin_stream_name: bool = True
origin_stream_name_field_name: str = "origin"
def merge(self, multi_stream):
for stream_name, stream in multi_stream.items():
for instance in stream:
if self.add_origin_stream_name:
instance[self.origin_stream_name_field_name] = stream_name
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
return MultiStream({self.new_stream_name: Stream(self.merge, gen_kwargs={"multi_stream": multi_stream})})
class Shuffle(PagedStreamOperator):
"""
Shuffles the order of instances in each page of a stream.
Args:
page_size (int): The size of each page in the stream. Defaults to 1000.
"""
def process(self, page: List[Dict], stream_name: str = None) -> Generator:
random.shuffle(page)
yield from page |