File size: 133,392 Bytes
0badbfa 0db93dd 1e4d944 f86db44 2038164 1e4d944 2038164 1e4d944 0badbfa d423f18 0db93dd 3c5feb8 1e4d944 0db93dd 3c5feb8 7e64b87 dc6018c 1e4d944 0db93dd 3c5feb8 1e4d944 0db93dd 1e4984f 0db93dd dc6018c 1e4d944 3c5feb8 d423f18 cc0572c d423f18 cc0572c d423f18 1e4d944 18db0da d423f18 3c5feb8 d423f18 0db93dd 3c5feb8 18db0da 1e4984f a4305d3 1e4984f 1e4d944 d423f18 3c5feb8 dc6018c 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 18db0da cb336b5 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 cb336b5 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 dc6018c 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 cb336b5 3c5feb8 1e4d944 1e4984f 1e4d944 3c5feb8 d423f18 1e4d944 d423f18 3c5feb8 d423f18 1e4d944 3c5feb8 1e4d944 11723f3 3c5feb8 1e4d944 902ea7b d423f18 1e4984f d423f18 1e4d944 d423f18 3c5feb8 1e4d944 3c5feb8 d423f18 3c5feb8 1e4d944 3c5feb8 1e4d944 d423f18 11723f3 d423f18 3c5feb8 1e4d944 3c5feb8 1e4d944 d423f18 3c5feb8 1e4d944 0badbfa 3c5feb8 0badbfa 3c5feb8 0badbfa 1e4d944 3c5feb8 1e4984f 0badbfa 3c5feb8 1e4d944 3c5feb8 0badbfa 3c5feb8 0badbfa 1e4d944 3c5feb8 1e4d944 3c5feb8 0badbfa 3c5feb8 1e4d944 f86db44 0badbfa 3c5feb8 1e4d944 3c5feb8 1e4d944 18db0da 1e4d944 d423f18 18db0da d423f18 7e64b87 1e4d944 cb336b5 1e4d944 3c5feb8 1e4d944 18db0da 1e4d944 18db0da 1e4d944 18db0da 1e4d944 d423f18 7e64b87 1e4984f d423f18 3c5feb8 1e4d944 3c5feb8 d423f18 1e4d944 d423f18 1e4d944 d423f18 1e4d944 d423f18 1e4d944 3c5feb8 1e4d944 d423f18 1e4d944 d423f18 3c5feb8 d423f18 1e4d944 d423f18 1e4984f 3c5feb8 1e4d944 3c5feb8 0db93dd 18db0da 1e4984f dc6018c 1e4d944 dc6018c 1e4984f dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 0db93dd 3c5feb8 0db93dd 1e4d944 cb336b5 1e4d944 0db93dd 18db0da 0db93dd 3c5feb8 0db93dd 0badbfa 3c5feb8 0badbfa dc6018c 0badbfa dc6018c 0badbfa 0db93dd dc6018c 0db93dd 3c5feb8 0db93dd 3c5feb8 1e4d944 3c5feb8 1e4d944 dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 1e4984f 3c5feb8 dc6018c 1e4d944 dc6018c 3c5feb8 0badbfa 0db93dd 3c5feb8 0badbfa 3c5feb8 0badbfa 3c5feb8 0db93dd 0badbfa dc6018c 0badbfa 3c5feb8 1e4d944 3c5feb8 1e4d944 dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 3c5feb8 dc6018c 1e4d944 dc6018c 3c5feb8 0badbfa 0db93dd 1e4984f 0db93dd 3c5feb8 0db93dd 3c5feb8 1e4d944 3c5feb8 0db93dd 3c5feb8 0db93dd cb336b5 0db93dd 3c5feb8 0db93dd cb336b5 0db93dd cb336b5 0db93dd cb336b5 0db93dd cb336b5 1e4984f cb336b5 1e4984f cb336b5 1e4984f cb336b5 1e4984f cb336b5 0db93dd 3c5feb8 0db93dd dc6018c 0db93dd 1e4984f 0db93dd 3c5feb8 dc6018c 0db93dd 3c5feb8 0db93dd 3c5feb8 1e4d944 3c5feb8 0db93dd 3c5feb8 cc0572c 3c5feb8 1e4d944 11723f3 0db93dd 3c5feb8 11723f3 0db93dd 11723f3 0db93dd dc6018c 0db93dd dc6018c 0db93dd dc6018c 0db93dd dc6018c 0db93dd 0badbfa 0db93dd 1e4984f 043ae31 1e4d944 11723f3 3c5feb8 11723f3 1e4d944 043ae31 3c5feb8 1e4d944 3c5feb8 7e64b87 1e4984f 1e4d944 7e64b87 1e4d944 cc0572c 11723f3 3c5feb8 11723f3 1e4d944 11723f3 3c5feb8 cc0572c 7e64b87 11723f3 7e64b87 cc0572c 0badbfa cc0572c 1e4984f cc0572c 1e4d944 3c5feb8 1e4d944 3c5feb8 cc0572c 3c5feb8 cc0572c 1e4d944 1e4984f 1e4d944 1e4984f 1e4d944 902ea7b 0badbfa 902ea7b 1e4984f 902ea7b 3c5feb8 1e4d944 3c5feb8 902ea7b 1e4d944 1e4984f 1e4d944 cb336b5 1e4d944 2038164 1e4984f dc6018c a4305d3 2038164 dc6018c 2038164 dc6018c 2038164 dc6018c 2038164 3c5feb8 dc6018c 3c5feb8 dc6018c 3c5feb8 dc6018c 2038164 3c5feb8 2038164 3c5feb8 2038164 3c5feb8 1e4d944 dc6018c 1e4d944 1e4984f dc6018c 3c5feb8 dc6018c 3c5feb8 1e4d944 3c5feb8 1e4984f dc6018c 1e4d944 902ea7b dc6018c 3c5feb8 dc6018c 1e4d944 dc6018c 3c5feb8 2038164 902ea7b 2038164 3c5feb8 2038164 3c5feb8 dc6018c 3c5feb8 902ea7b 3c5feb8 a4305d3 2038164 3c5feb8 2038164 3c5feb8 dc6018c 2038164 1e4984f dc6018c 2038164 dc6018c 2038164 0badbfa dc6018c 1e4984f 0badbfa 3c5feb8 1e4d944 3c5feb8 1e4d944 3c5feb8 0badbfa 3c5feb8 1e4d944 0badbfa dc6018c 0badbfa 7e64b87 1e4d944 0badbfa 1e4d944 0badbfa cb336b5 1e4d944 0badbfa 1e4d944 0badbfa 1e4d944 0badbfa 3c5feb8 1e4d944 f86db44 0badbfa 1e4d944 3c5feb8 1e4d944 3c5feb8 0badbfa cb336b5 1e4d944 0badbfa 3c5feb8 1e4d944 0badbfa 1e4d944 0badbfa 3c5feb8 1e4d944 f86db44 0badbfa 3c5feb8 7e64b87 cb336b5 1e4984f cb336b5 1e4984f cb336b5 1e4984f cb336b5 1e4984f cb336b5 f86db44 1e4984f f86db44 cb336b5 1e4d944 f86db44 1e4d944 f86db44 1e4d944 f86db44 1e4d944 f86db44 43978ec 1e4d944 f86db44 43978ec f86db44 43978ec 2a86d9a 43978ec f86db44 1e4d944 f86db44 43978ec f86db44 2a86d9a f86db44 2a86d9a f86db44 2a86d9a f86db44 2a86d9a f86db44 2a86d9a f86db44 1e4d944 f86db44 1e4d944 f86db44 1e4984f 3c5feb8 1e4d944 1e4984f 1e4d944 3c5feb8 1e4d944 3c5feb8 1e4984f 1e4d944 3c5feb8 dc6018c 1e4984f 1e4d944 dc6018c 1e4984f dc6018c 1e4d944 dc6018c 1e4d944 dc6018c 1e4984f dc6018c 1e4d944 a4305d3 1e4d944 cb336b5 1e4984f cb336b5 1e4984f cb336b5 1e4984f cb336b5 1e4984f cb336b5 1e4984f 18db0da 7e64b87 18db0da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 |
import re
import string
import uuid
import warnings
from abc import ABC, abstractmethod
from collections import Counter
from copy import deepcopy
from dataclasses import field
from statistics import mean
from typing import Any, Dict, Generator, List, Optional, Tuple
import evaluate
import numpy
import numpy as np
from scipy.stats import bootstrap
from scipy.stats._warnings_errors import DegenerateDataWarning
from .artifact import Artifact
from .dataclass import AbstractField, InternalField, NonPositionalField, OptionalField
from .logging_utils import get_logger
from .metric_utils import InstanceInput, MetricRequest, MetricResponse
from .operator import (
MultiStreamOperator,
SingleStreamOperator,
StreamingOperator,
StreamInstanceOperator,
)
from .operators import CopyFields
from .random_utils import get_seed
from .settings_utils import get_settings
from .stream import MultiStream, Stream
from .type_utils import isoftype, parse_type_string, to_float_or_default
logger = get_logger()
settings = get_settings()
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
warnings.filterwarnings("ignore", category=DegenerateDataWarning)
def abstract_factory():
return {}
def abstract_field():
return field(default_factory=abstract_factory)
def nan_mean(x):
with warnings.catch_warnings():
# final mean should be mean of scores, ignoring NaN, hence nanmean
# but if the group function values is NaN for ALL values, nanmean throws a
# RuntimeWarning that it is calculating the mean of an empty slice (with no non-Nans)
# this is the desired behavior, but we want to avoid the warning here
warnings.simplefilter("ignore", category=RuntimeWarning)
return np.nanmean(x)
def nan_max(x):
with warnings.catch_warnings():
# final mean should be mean of scores, ignoring NaN, hence nanmax
# but if the group function values is NaN for ALL values, nanmean throws a
# RuntimeWarning that it is calculating the mean of an empty slice (with no non-Nans)
# this is the desired behavior, but we want to avoid the warning here
warnings.simplefilter("ignore", category=RuntimeWarning)
return np.nanmax(x)
class UpdateStream(StreamInstanceOperator):
update: dict
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance.update(self.update)
return instance
class Metric(Artifact):
main_score: str = AbstractField()
# Override 'prediction_type' with the expected type of predictions
# and references. Example: "List[str]", "List[Dict]"", "string".
# If left with default None, a warning will be displayed.
# In future versions of unitxt, this will be an error.
prediction_type: str = None
# Standard metrics can receive multiple references per predictions (in a list)
# Some metrics support only a single reference per prediction (one element in the list)
single_reference_per_prediction: bool = False
# Used to store the parsed prediction type and avoid
# parsing on every use
_parsed_prediction_type = None
def _validate_references_and_prediction(self, references, predictions):
if not isoftype(predictions, List[Any]):
raise ValueError(
f"Metric {self.get_metric_name()} should receive a list of predictions {self.get_metric_name()}. Received predictions of type {type(predictions)}: {predictions}"
)
if not isoftype(references, List[Any]):
raise ValueError(
f"Metric {self.get_metric_name()} should receive a list of predictions. Received references of type {type(references)}: {references}"
)
if len(references) != len(predictions):
raise ValueError(
f"references size ({len(references)})"
f" doesn't mach predictions size ({len(references)})."
)
for reference in references:
self._validate_reference(reference)
for prediction in predictions:
self._validate_prediction(prediction)
def _validate_prediction(self, prediction):
if not isoftype(prediction, self.get_prediction_type()):
raise ValueError(
f"Each prediction is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received prediction of type {type(prediction)}: {prediction}"
)
def _validate_reference(self, reference):
if not isoftype(reference, List[Any]):
raise ValueError(
f"Expecting a list of references for each prediction in {self.get_metric_name()} metric. Received reference of type {type(reference)}: {reference}"
)
if self.single_reference_per_prediction and not len(reference) == 1:
raise ValueError(
f"Expecting a list with a single reference per prediction in {self.get_metric_name()} metric. Received a list with multiple references: {reference}"
)
for ref in reference:
if not isoftype(ref, self.get_prediction_type()):
raise ValueError(
f"Each reference is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received reference of type {type(ref)}: {ref}"
)
def get_prediction_type(self):
if self.prediction_type is None:
logger.warning(
f"{self.get_metric_name()} metric does not set the 'prediction_type' parameter so input type checking is not performed. Set the prediction type to the expected prediction type (e.g. 'str', 'List[str]', or 'Any'). In future version of unitxt this will raise an exception."
)
self._parsed_prediction_type = Any
try:
if self._parsed_prediction_type is not None:
return self._parsed_prediction_type
self._parsed_prediction_type = parse_type_string(self.prediction_type)
except ValueError:
raise ValueError(
"Could convert prediction type '{self.prediction_type}' in {self.get_metric_name()} to known type. To enable type checking for this prediction type, open unitxt issue with this message. Alternatively, set the metric's prediction_type to 'Any'"
) from None
return self._parsed_prediction_type
def get_metric_name(self):
if self.__id__ is not None:
return self.__id__
return self.__class__.__name__
def consume_stream(self, stream: Stream):
references = []
predictions = []
additional_inputs = []
instances = []
for instance in stream:
references.append(instance["references"])
predictions.append(instance["prediction"])
additional_inputs.append(
instance["additional_inputs"] if "additional_inputs" in instance else {}
)
instances.append(instance)
return predictions, references, additional_inputs, instances
@staticmethod
def update_instance_scores(instances, instances_scores: List[Dict[str, Any]]):
for instance, new_scores in zip(instances, instances_scores):
if "score" not in instance:
instance["score"] = {}
scores = instance["score"]
if "instance" not in scores:
scores["instance"] = {}
scores["instance"].update(new_scores)
@staticmethod
def set_global_score(instances, global_score: Dict[str, Any]):
for instance in instances:
if "score" not in instance:
instance["score"] = {}
scores = instance["score"]
if "global" not in scores:
scores["global"] = {}
scores["global"] = global_score
@abstractmethod
def disable_confidence_interval_calculation(self):
pass
class MetricWithConfidenceInterval(Metric):
# The number of resamples used to estimate the confidence intervals of this metric.
# Use None to disable confidence interval computation.
n_resamples: int = None
confidence_level: float = 0.95
ci_scores: List[str] = None
@staticmethod
def new_random_generator():
# The np.random.default_rng expects a 32-bit int, while hash(..) can return a 64-bit integer.
# So use '& MAX_32BIT' to get a 32-bit seed.
_max_32bit = 2**32 - 1
return np.random.default_rng(hash(get_seed()) & _max_32bit)
def disable_confidence_interval_calculation(self):
self.n_resamples = None
def _can_compute_confidence_intervals(self, num_predictions):
return (
self.n_resamples is not None
and self.n_resamples > 1
and num_predictions > 1
)
@staticmethod
def average_item_scores(instances: List[dict], score_name: str):
"""Calculate mean of a set of instance scores (given by score_name), omitting NaN values.
Args:
instances: list of dicts of each instance's instance scores.
score_name: score field names to compute the mean for.
"""
return nan_mean(
[instance["score"]["instance"][score_name] for instance in instances]
)
@staticmethod
def max_item_scores(instances: List[dict], score_name: str):
"""Calculate max of a set of instance scores (given by score_name), omitting NaN values.
Args:
instances: list of dicts of each instance's instance scores.
score_name: score field names to compute the mean for.
"""
return nan_max(
[instance["score"]["instance"][score_name] for instance in instances]
)
@staticmethod
def _all_instance_scores_equal(instances, score_name):
instance_scores = [
instance["score"]["instance"][score_name] for instance in instances
]
non_nan_instance_scores = [
score for score in instance_scores if score is not np.nan
]
num_unique_scores = len(set(non_nan_instance_scores))
return num_unique_scores == 1
def score_based_confidence_interval(
self,
instances: List[dict],
score_names: List[str],
aggregation_func=None,
ci_score_prefix="",
):
"""Compute confidence intervals based on existing scores, already computed on the input instances.
Unlike GlobalMetric, this is simply a function of the instance scores (possibly taking into account task_data field),
so they don't need to be recomputed after every bootstrap draw.
Args:
instances: The instances for which the confidence intervals are computed; should already have the relevant instance scores calculated.
score_names: List of instance score field names to compute a confidence interval for.
aggregation_func: A function with arguments instances, field_name; is applied on list of instances (which may include task_data
field, as well as the prediction and references), and the field_name; default is simply to take the mean field_name from
instances after resampling, if argument is None.
ci_score_prefix: An optional string prefix to the score_name in the CI. Useful in cases where the
aggregation_func is something other than the mean
Returns:
Dict of confidence interval values
"""
result = {}
if not self._can_compute_confidence_intervals(num_predictions=len(instances)):
return result
ci_score_prefix = str(ci_score_prefix)
if aggregation_func is None:
# if aggregation_func is None, we simply take the mean of the resampled instance scores
# otherwise, the aggregation_func needs to be applied AFTER resampling the instances;
# that is, re-form the groups, calculate the function, and take the mean of the group scores
aggregation_func = self.average_item_scores
for score_name in score_names:
# If all computed instance level scores are the same, there is no point in computing
# confidence intervals. So skip to the next score.
if self._all_instance_scores_equal(instances, score_name):
continue
# need to redefine the statistic function within the loop because score_name is a loop variable
def statistic(arr, axis, score_name=score_name):
# arr is a 2d array where each row is a resampling, so we
# iterate over the rows and compute the metric on each resampling
scores = numpy.apply_along_axis(
lambda resampled_instances: aggregation_func(
resampled_instances, score_name
),
axis=axis,
arr=arr,
)
return self.resample_from_non_nan(scores)
# apply bootstrap only on the relevant field
ci = bootstrap(
(instances,),
statistic=statistic,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=self.new_random_generator(),
).confidence_interval
full_score_name = ci_score_prefix + score_name
result[f"{full_score_name}_ci_low"] = ci.low
result[f"{full_score_name}_ci_high"] = ci.high
if score_name == self.main_score:
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
return result
def resample_from_non_nan(self, values):
"""Given an array values, will replace any NaN values with elements resampled with replacement from the non-NaN ones.
here we deal with samples on which the metric could not be computed. These are
edge cases - for example, when the sample contains only empty strings.
CI is about the distribution around the statistic (e.g. mean), it doesn't deal with
cases in which the metric is not computable. Therefore, we ignore these edge cases
as part of the computation of CI.
In theory there would be several ways to deal with this:
1. skip the errors and return a shorter array => this fails because Scipy requires
this callback (i.e. the statistic() callback) to return an array of the same size
as the number of resamples
2. Put np.nan for the errors => this fails because in such case the ci itself
becomes np.nan. So one edge case can fail the whole CI computation.
3. Replace the errors with a sampling from the successful cases => this is what is implemented.
This resampling makes it so that, if possible, the bca confidence interval returned by bootstrap will not be NaN, since
bootstrap does not ignore NaNs. However, if there are 0 or 1 non-NaN values, or all non-NaN values are equal,
the resulting distribution will be degenerate (only one unique value) so the CI will still be NaN since there is
no variability. In this case, the CI is essentially an interval of length 0 equaling the mean itself.
"""
if values.size > 1:
error_indices = numpy.isnan(values)
n_errors = sum(error_indices)
if 0 < n_errors < values.size:
# replace NaN aggregate scores with random draws from non-NaN scores, so that confidence interval isn't NaN itself
values[error_indices] = self.new_random_generator().choice(
values[~error_indices], n_errors, replace=True
)
return values
def compute_global_confidence_intervals(
self, references, predictions, task_data, score_name
):
"""Computed confidence intervals for a set of references and predictions."""
random_gen = self.new_random_generator()
def statistic(arr, axis):
# arr is a 2d array where each row is a resampling, so we
# iterate over the rows and compute the metric on each resampling
def metric(sample_refs, sample_preds, sample_task_data):
try:
return self._compute(
references=sample_refs,
predictions=sample_preds,
task_data=sample_task_data,
)["score"]
except Exception as e:
# this happens in edge cases, for example, when the sampling creates a
# sample where all strings are empty and this fails bleu.
logger.info(f"Warning in {self.__class__.__name__}", e)
return np.nan
# resample the instance scores, and then return the global score each time
scores = numpy.apply_along_axis(
lambda x: metric(
sample_refs=[references[i] for i in x],
sample_preds=[predictions[i] for i in x],
sample_task_data=[task_data[i] for i in x],
),
axis=axis,
arr=arr,
)
# in some resamplings of instances, the global score may be NaN since it cannot be computed;
# in these cases, the bca confidence interval will be NaN because it does not ignore these values,
# so we replace any NaN values with those resampled from the non-NaN ones.
return self.resample_from_non_nan(scores)
result = {}
num_predictions = len(predictions)
if self._can_compute_confidence_intervals(num_predictions=num_predictions):
identifiers = list(range(num_predictions))
with warnings.catch_warnings():
# Avoid RuntimeWarning in bootstrap computation. This happens on small datasets where
# the value of the computed global metric is the same on all resamplings.
warnings.simplefilter("ignore", category=RuntimeWarning)
ci = bootstrap(
(identifiers,),
statistic=statistic,
n_resamples=self.n_resamples,
confidence_level=self.confidence_level,
random_state=random_gen,
).confidence_interval
result["score_ci_low"] = ci.low
result["score_ci_high"] = ci.high
result[f"{score_name}_ci_low"] = ci.low
result[f"{score_name}_ci_high"] = ci.high
return result
class GlobalMetric(SingleStreamOperator, MetricWithConfidenceInterval):
"""A class for computing metrics that require joint calculations over all instances and are not just aggregation of scores of individuals instances.
For example, macro_F1 requires
calculation requires calculation of recall and precision per class, so all instances of the class
need to be considered. Accuracy, on the other hand, is just an average of the accuracy of all the instances.
"""
n_resamples: int = OptionalField(
default_factory=lambda: settings.num_resamples_for_global_metrics
)
# calculate scores for single instances
process_single_instances = True
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
references = []
predictions = []
task_data = []
global_score = {}
instances = []
for instance in stream:
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance_references, instance_prediction = (
instance["references"],
instance["prediction"],
)
references.append(instance_references)
predictions.append(instance_prediction)
instances.append(instance)
instance_task_data = (
instance["task_data"] if "task_data" in instance else {}
)
task_data.append(instance_task_data)
instance_score = None
# for backward compatibility
no_score_value = np.nan
if self.process_single_instances:
try:
instance_score = self._compute(
[instance_references],
[instance_prediction],
[instance_task_data],
)
except:
no_score_value = None
if not instance_score:
instance_score = {
"score": no_score_value,
"score_name": self.main_score,
}
if isinstance(self.main_score, str):
instance_score[self.main_score] = no_score_value
instance["score"]["instance"].update(instance_score)
self._validate_references_and_prediction(references, predictions)
result = self._compute(references, predictions, task_data)
global_score.update(result)
score_name = global_score["score_name"]
confidence_interval = self.compute_global_confidence_intervals(
references, predictions, task_data, score_name
)
global_score.update(confidence_interval)
for instance in instances:
instance["score"]["global"] = global_score
yield instance
def _compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Any],
) -> dict:
result = self.compute(references, predictions, task_data)
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Any],
) -> dict:
"""Computes a scores dictionary on a list of references, predictions and input.
This function is called once per instance, and then another time
over all data instances.
Returns:
a dictionary of scores that is set as:
the instance scores when called on a single data instance
the global score when called on the all data instances
"""
pass
class BulkInstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
n_resamples: int = OptionalField(
default_factory=lambda: settings.num_resamples_for_instance_metrics
)
main_score: str
reduction_map: Dict[str, List[str]]
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
global_score = {}
instances = []
# consume the stream
references, predictions = map(
list,
zip(
*[
(instance["references"], instance["prediction"])
for instance in stream
]
),
)
task_data = [
instance["task_data"] if "task_data" in instance else {}
for instance in stream
]
self._validate_references_and_prediction(references, predictions)
# compute the metric over all refs and preds
instance_scores = self.compute(
references=references,
predictions=predictions,
task_data=task_data,
)
# add the score and score_name fields
for instance_score in instance_scores:
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
for instance, score in zip(stream, instance_scores):
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
for field_name in fields:
global_score[field_name] = mean(
[
instance["score"]["instance"][field_name]
for instance in instances
]
)
if field_name == self.main_score:
global_score["score"] = global_score[field_name]
global_score["score_name"] = self.main_score
ci_fields = (
list(set(self.ci_scores))
if self.ci_scores is not None
else [self.main_score]
)
confidence_interval = self.score_based_confidence_interval(
instances=instances, score_names=ci_fields
)
global_score.update(confidence_interval)
for instance in instances:
yield instance
@abstractmethod
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Dict],
) -> List[Dict[str, Any]]:
pass
class InstanceMetric(SingleStreamOperator, MetricWithConfidenceInterval):
"""Class for metrics for which a global score can be calculated by aggregating the instance scores (possibly with additional instance inputs).
InstanceMetric currently allows two reductions:
1. 'mean', which calculates the mean of instance scores,
2. 'group_mean', which first applies an aggregation function specified in the reduction_map
to instance scores grouped by the field grouping_field (which must not be None), and returns the mean
of the group scores; if grouping_field is None, grouping is disabled.
See _validate_group_mean_reduction for formatting instructions.
"""
n_resamples: int = OptionalField(
default_factory=lambda: settings.num_resamples_for_instance_metrics
)
# some group_mean aggregation functions (3rd element of "agg_func" list in the reduction)
# only require a list of instance scores (e.g., mean, median, etc.). Others aggregation functions
# require an additional column (e.g., a subgroup identifier) by which the instance scores will be grouped
# if subgroup_column is not None, a column by the specified name will be required in task_data
subgroup_column = None
implemented_reductions: List[str] = field(
default_factory=lambda: ["mean", "group_mean", "max"]
)
reduction_map: Dict[str, List[str]] = AbstractField()
reference_field: str = NonPositionalField(default="references")
prediction_field: str = NonPositionalField(default="prediction")
def _validate_group_mean_reduction(self, instances: List[dict]):
"""Ensure that group_mean reduction_map is properly formatted.
Example: Apply the variance (np.var) to group Accuracy instance scores. This class would be specified as follows:
class GroupVarianceAccuracy(Accuracy):
reduction_map = {'group_mean': {'agg_func': ['variance', np.var, True]}}
reduction_map must be a dict with values containing
- an 'agg_func' field with value being a 3-element list where
- 1st element is a string name of the aggregation function (used in naming the CI report)
- 2nd element is the callable aggregation function
- 3rd element is a Boolean indicator of whether, during bootstrap CI calculation, the groups are to be sampled as single units.
If True, the group scores are calculated and then resampled. This treats the group units as the unit of
interest for which the CI is being compared.
If False, the instances are resampled individually, and the groups determined
(meaning the groups may be of slightly different size or composition from the original
depending on the resampling of the instances).
- Optional: 'score_fields' key with list value containing the string names of fields to apply the aggregation to
- If not present, the parent class main_score is used.
The aggregation function (2nd element of agg_func) can be one of two types:
1. simple: calculate a summary statistic from a single group of values (e.g. mean, median, etc.).
This is best suited for cases where the instances are independent of each other, other than belonging to the same group
2. comparison: requires subgroup_column to be specified. This function conducts
a comparison between scores for differing values of subgroup_column (e.g., 'original' vs 'paraphrase').
An example is where the original instance is a question, and the others are various paraphrases
or perturbations of this question. Here, the function would return, say, a comparison of the instance accuracies
rather than, say, the average instance accuracy.
In these cases, we recommend setting the 3rd parameter to be True so that the groups are resampled together.
Example:
class GroupVsBaselineDiffAccuracy(Accuracy):
subgroup_column = 'variant_type'
reduction_map = {'group_mean': {'agg_func': ['accuracy_diff', accuracy_diff, True],}}
# where the function is defined as
def accuracy_diff(subgroup_scores_dict, expected_subgroup_types=['original', 'paraphrase']):
validate_subgroup_types(subgroup_scores_dict, expected_subgroup_types)
from statistics import mean
return mean(subgroup_scores_dict['paraphrase']) - mean(subgroup_scores_dict['original'])
The input dataset should look like:
'group_id' 'question' 'variant_type'
1 'How do you fix a car engine?' 'original'
1 'What is the best way to fix an engine?' 'paraphrase'
1 'How do you repair a car engine?' 'paraphrase'
1 'How do I repair my engine?' 'paraphrase'
2 'Why are ants eating my food?' 'original'
"""
# instances need to all have task_data field with field group_id
assert all(
"task_data" in instance for instance in instances
), "each instance must have an task_data field"
assert all(
isinstance(instance["task_data"], dict) for instance in instances
), "each instance must have an task_data field that is a dict"
assert all(
"group_id" in instance["task_data"] for instance in instances
), "each instance task_data dict must have a key group_id"
# validate the reduction_map
assert (
"group_mean" in self.reduction_map
), "reduction_map must have a 'group_mean' key"
fields = self.reduction_map["group_mean"]
# for group_mean, expects a dict
assert isinstance(fields, dict)
assert (
"agg_func" in fields
), "fields should have a key 'agg_func' whose value is a 3-element list of a function name, function definition, and a boolean indicator"
assert isinstance(
fields["agg_func"], list
), "fields['agg_func'] should be a list"
assert (
len(fields["agg_func"]) == 3
), "fields['agg_func'] should be a 3-element list"
assert isinstance(
fields["agg_func"][0], str
), "first item in fields['agg_func'] should be a string name of a function"
assert callable(
fields["agg_func"][1]
), "second item in fields['agg_func'] should be a callable function"
assert isinstance(
fields["agg_func"][2], bool
), "third item in fields['agg_func'] should be a boolean value"
if "score_fields" in fields:
assert isinstance(fields["score_fields"], list)
# for aggregation functions that use the subgroup_column (expect a dict of lists), check that
# this field exists
if self.subgroup_column is not None:
assert all(
self.subgroup_column in instance["task_data"] for instance in instances
), f"each instance task_data dict must have a key {self.subgroup_column}"
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
instances, global_score = self.compute_instance_scores(stream)
for reduction_type, reduction_params in self.reduction_map.items():
assert (
reduction_type in self.implemented_reductions
), f"Reduction {reduction_type} is not implemented, use one of {self.implemented_reductions}"
field_name_full_prefix = ""
# used for passing to the bootstrapping, depends on whether the groups are fixed or not
aggregation_function = None
if reduction_type == "mean":
aggregation_function = self.average_item_scores
reduction_fields = list(set(reduction_params))
# no group reduction, so resample instances individually
scores_to_resample = instances
elif reduction_type == "max":
aggregation_function = self.max_item_scores
reduction_fields = list(set(reduction_params))
# no group reduction, so resample instances individually
scores_to_resample = instances
elif reduction_type == "group_mean":
aggregation_function = self.average_item_scores
self._validate_group_mean_reduction(instances=instances)
reduction_fields = (
[self.main_score]
if "score_fields" not in reduction_params
else list(set(reduction_params["score_fields"]))
)
aggregation_function_name = str(reduction_params["agg_func"][0])
field_name_full_prefix = "group_" + aggregation_function_name + "_"
do_resample_as_group = reduction_params["agg_func"][2]
if do_resample_as_group:
# append fixed_ to name because resamples the groups as fixed units
field_name_full_prefix = "fixed_" + field_name_full_prefix
(
scores_to_resample,
aggregation_function,
) = self._set_up_group_mean_aggregation(
instances, reduction_params, reduction_fields
)
else:
raise ValueError(
f"Reduction {reduction_type} is not supported, please specify a valid reduction method in reduction_map {self.reduction_map}."
)
# calculate global scores for each reduction field
for field_name in reduction_fields:
field_name_full = field_name_full_prefix + field_name
# if group resampling (3rd element of agg_func parameter) is True, then
# 1. scores_to_resample are the group scores, and
# 2. aggregation_function is to take the raw mean
# if no group resampling (3rd element of agg_func parameter) is False, then
# 1. scores_to_resample are the original instance scores, and
# 2. aggregation_function is to apply the group aggregation from the instance scores
# either way, the application of aggregation_function to scores_to_resample yields the global score
global_score[field_name_full] = aggregation_function(
scores_to_resample, field_name
)
if field_name == self.main_score:
global_score["score"] = global_score[field_name_full]
global_score["score_name"] = field_name_full
# need to specify which fields should have CIs calculated for them through ci_scores
# (will not automatically calculate CIs for fields in reduction map)
if self.ci_scores is not None:
confidence_interval = self.score_based_confidence_interval(
instances=scores_to_resample,
score_names=list(set(self.ci_scores)),
ci_score_prefix=field_name_full_prefix,
aggregation_func=aggregation_function,
)
global_score.update(confidence_interval)
yield from instances
def compute_instance_scores(
self, stream: Stream, stream_name: Optional[str] = None
):
global_score = {}
instances = []
for instance in stream:
task_data = instance["task_data"] if "task_data" in instance else {}
if self.reference_field == "references":
refs = instance["references"]
else:
refs = task_data[self.reference_field]
if not isinstance(refs, list):
refs = [refs]
if self.prediction_field == "prediction":
pred = instance["prediction"]
else:
pred = task_data[self.prediction_field]
self._validate_prediction(pred)
self._validate_reference(refs)
instance_score = self.compute(
references=refs, prediction=pred, task_data=task_data
)
instance_score["score"] = instance_score[self.main_score]
instance_score["score_name"] = self.main_score
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(instance_score)
instances.append(instance)
return instances, global_score
def get_group_scores(
self, instances: List[dict], score_names: List[str], group_aggregation_func
):
"""Group scores by the group_id and subgroup_type fields of each instance, and compute group_aggregation_func by group.
Args:
instances: List of observation instances with instance-level scores (fields) computed.
score_names: List of instance score names in each instance to apply the aggregation function.
group_aggregation_func: Callable aggregation function accepting a list of numeric scores;
or, if self.subgroup_column is not None, a dict of subgroup types scores by subgroup_column value.
callable function returns a single score for the group
Returns:
List of dicts, each corresponding to a group of instances (defined by 'group_id'),
with an aggregate group score for each score_name
"""
from collections import defaultdict
# three-level defaultdict:
# first is the grouping, second is the field name, the third is the subgroup_type (by default 'default')
group_to_instance_scores = defaultdict(
lambda: defaultdict(lambda: defaultdict(list))
)
# check if function has fields for subgroup_column
uses_subgroups = self.subgroup_column is not None
default_subgroup_name = "default"
# loop through the instances and group the scores
for instance in instances:
task_data = instance["task_data"]
group_key = task_data["group_id"]
# for functions that do comparisons between subgroup_column groups
# if function doesn't use subgroup_column, or none is present, set "default" as default value, and pass all scores
subgroup_type = (
task_data[self.subgroup_column]
if uses_subgroups
else default_subgroup_name
)
for score_name in score_names:
group_to_instance_scores[group_key][score_name][subgroup_type].append(
instance["score"]["instance"][score_name]
)
# if group_aggregation_func expects a subgroup-types score dict, pass it; otherwise pass the default type list of scores
return [
{
"score": {
"instance": {
score_name: group_aggregation_func(
score_dict
if uses_subgroups
else score_dict[default_subgroup_name]
)
for score_name, score_dict in group_scores.items()
}
}
}
for group_scores in group_to_instance_scores.values()
]
def _set_up_group_mean_aggregation(
self, instances, reduction_params, reduction_fields
):
group_aggregation_func = reduction_params["agg_func"][1]
# if treat groups as units
do_resample_as_group = reduction_params["agg_func"][2]
if do_resample_as_group:
# pass the group aggregate---not instance---scores to resample as usual
aggregation_function = self.average_item_scores
scores_to_resample = self.get_group_scores(
instances, reduction_fields, group_aggregation_func
)
else:
# pass the instance scores to resample, and calculate the group aggregation on the resamplings
scores_to_resample = instances
def aggregation_function(
instances,
field_name,
group_aggregation_func=group_aggregation_func,
):
group_scores = self.get_group_scores(
instances, [field_name], group_aggregation_func
)
return nan_mean(
[group["score"]["instance"][field_name] for group in group_scores]
)
return scores_to_resample, aggregation_function
@abstractmethod
def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
pass
class Accuracy(InstanceMetric):
reduction_map = {"mean": ["accuracy"]}
main_score = "accuracy"
ci_scores = ["accuracy"]
prediction_type = "Any" # string representation is compared
def compute(
self, references: List[Any], prediction: Any, task_data: List[Dict]
) -> dict:
result = {
self.main_score: float(
str(prediction) in [str(reference) for reference in references]
)
}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class MaxAccuracy(Accuracy):
"""Calculate the maximal accuracy over all instances as the global score."""
reduction_map = {"max": ["accuracy"]}
class UnsortedListExactMatch(InstanceMetric):
reduction_map = {"mean": ["unsorted_list_exact_match"]}
main_score = "unsorted_list_exact_match"
ci_scores = ["unsorted_list_exact_match"]
def compute(
self, references: List[Any], prediction: Any, task_data: List[Dict]
) -> dict:
result = {self.main_score: float(sorted(prediction) == sorted(references[0]))}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class StringContainment(InstanceMetric):
reduction_map = {"mean": ["string_containment"]}
main_score = "string_containment"
ci_scores = ["string_containment"]
prediction_type = "Any" # string representation is compared
single_reference_per_prediction = False # multiple references allowed
def compute(
self, references: List[Any], prediction: Any, task_data: List[Dict]
) -> dict:
result = {
self.main_score: float(
any(str(reference) in str(prediction) for reference in references)
)
}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class MetricPipeline(MultiStreamOperator, Metric):
main_score: str = None
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
postpreprocess_steps: Optional[List[StreamingOperator]] = field(
default_factory=list
)
metric: Metric = None
def disable_confidence_interval_calculation(self):
self.metric.disable_confidence_interval_calculation()
def verify(self):
assert (
self.metric is not None
), f"'metric' is not set in {self.get_metric_name()}"
assert (
self.main_score is not None
), f"'main_score' is not set in {self.get_metric_name()}"
assert isinstance(
self.metric, Metric
), f"'metric' is not set to a Metric class in {self.get_metric_name()} (type{self.metric})"
def prepare(self):
super().prepare()
self.prepare_score = CopyFields(
field_to_field=[
[f"score/instance/{self.main_score}", "score/instance/score"],
[f"score/global/{self.main_score}", "score/global/score"],
],
)
def process(self, multi_stream: MultiStream) -> MultiStream:
for step in self.preprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.metric(multi_stream)
for step in self.postpreprocess_steps:
multi_stream = step(multi_stream)
return self.prepare_score(multi_stream)
class HuggingfaceMetric(GlobalMetric):
hf_metric_name: str = None
main_score: str = None # The main score returned from the metric
hf_main_score: str = (
None # USed if HF returns uses a different score name for the main metric
)
scale: float = 1.0 # optional scaling of main results
scaled_fields: list = None
# This are fixed arguments passed to compute method
hf_compute_args: Dict[str, Any] = OptionalField(default_factory=dict)
# These are additional input fields passed to HF compute method (a list with one value per instance)
hf_additional_input_fields: List = OptionalField(default_factory=list)
# These are additional input fields that are passed as one value
hf_additional_input_fields_pass_one_value: List = OptionalField(
default_factory=list
)
experiment_id: str = OptionalField(default_factory=lambda: str(uuid.uuid4()))
def verify(self):
assert (
self.hf_additional_input_fields is None
or isoftype(self.hf_additional_input_fields, List[str])
), f"Argument hf_additional_input_fields should be either None or List[str]. It is now: {self.hf_additional_input_fields}."
assert (
self.hf_additional_input_fields_pass_one_value is None
or isoftype(self.hf_additional_input_fields_pass_one_value, List[str])
), f"Argument hf_additional_input_fields_pass_one_value should be either None or List[str]. It is now: {self.hf_additional_input_fields_pass_one_value}."
return super().verify()
def prepare(self):
super().prepare()
self.metric = evaluate.load(
self.hf_metric_name, experiment_id=self.experiment_id
)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Dict],
) -> dict:
passed_task_data = {}
for additional_input_field in self.hf_additional_input_fields:
assert (
additional_input_field in task_data[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in task_data: {task_data[0]}"
passed_task_data[additional_input_field] = [
additional_input[additional_input_field]
for additional_input in task_data
]
for additional_input_field in self.hf_additional_input_fields_pass_one_value:
assert (
additional_input_field in task_data[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in task_data: {task_data[0]}"
values = {
additional_input[additional_input_field]
for additional_input in task_data
}
assert (
len(values) == 1
), f"Values of '{additional_input_field}' field required by {__class__.__name__} should all be the same, but have multiple values {values}"
passed_task_data[additional_input_field] = next(iter(values))
# add check that all required fields in self.metrics are in passed_task_data
result = self.metric.compute(
predictions=predictions,
references=references,
**passed_task_data,
**self.hf_compute_args,
)
if self.hf_main_score:
result[self.main_score] = result[self.hf_main_score]
del result[self.hf_main_score]
if self.scale != 1.0:
assert (
self.scaled_fields is not None
), f"Scaling factor was set to {self.scale}, but no fields specified"
for key in self.scaled_fields:
assert (
key in result
), f"Trying to scale field '{key}' which is not in results of metrics: {result}"
if isinstance(result[key], list):
assert all(
isinstance(v, float) for v in result[key]
), "Not all scaled field '{key}' values are floats: {result[key]}"
result[key] = [v / self.scale for v in result[key]]
else:
assert isinstance(
result[key], float
), "Scaled field '{key}' is not float: {result[key]}"
result[key] /= self.scale
return result
class HuggingfaceBulkMetric(BulkInstanceMetric):
hf_metric_name: str
hf_metric_fields: List[str]
hf_compute_args: dict = {}
hf_additional_input_fields: List = OptionalField(default_factory=list)
def prepare(self):
super().prepare()
self.metric = evaluate.load(self.hf_metric_name)
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Any],
) -> List[Dict[str, Any]]:
passed_task_data = {}
for additional_input_field in self.hf_additional_input_fields:
assert (
additional_input_field in task_data[0]
), f"'{additional_input_field}' field required by {__class__.__name__} is not in passed in task_data: {task_data[0]}"
passed_task_data[additional_input_field] = [
additional_input[additional_input_field]
for additional_input in task_data
]
# add check that all required fields in self.metrics are in passed_task_data
scores = self.metric.compute(
predictions=predictions,
references=references,
**passed_task_data,
**self.hf_compute_args,
)
# convert dict of lists to a list of dicts
results = [{} for _ in range(len(scores[self.hf_metric_fields[0]]))]
for key in self.hf_metric_fields:
values = scores[key]
for result_id, result in enumerate(results):
result[key] = values[result_id]
return results
class F1(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
metric = "f1"
prediction_type = "str"
single_reference_per_prediction = True
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict],
) -> dict:
self.str_to_id = {}
self.id_to_str = {}
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
self.str_to_id.keys()
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
labels = list(set(formatted_references))
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
labels=labels,
average=self.average,
)
if isinstance(result[self.metric], numpy.ndarray):
final_result = {self.main_score: mean(result[self.metric])}
for i, label in enumerate(labels):
final_result[f"{self.metric}_" + self.id_to_str[label]] = result[
self.metric
][i]
else:
final_result = {self.main_score: result[self.metric]}
return final_result
class F1Micro(F1):
main_score = "f1_micro"
average = "micro"
class F1Binary(F1):
"""Calculate f1 for a binary task, using 0.5 as the threshold in the case of float predictions."""
process_single_instances = False
main_score = "f1_binary"
average = "binary"
pos_classes = {"1", "1.0", "yes", "true"}
threshold = 0.5
def get_str_id(self, str):
return int(str)
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict],
) -> dict:
predictions_floats = [to_float_or_default(p) for p in predictions]
predictions = [str(int(p > self.threshold)) for p in predictions_floats]
references = [
["1"] if r[0].lower() in self.pos_classes else ["0"] for r in references
]
return super().compute(references, predictions, task_data)
class RecallBinary(F1Binary):
main_score = "recall_binary"
metric = "recall"
class PrecisionBinary(F1Binary):
main_score = "precision_binary"
metric = "precision"
class F1Macro(F1):
main_score = "f1_macro"
class F1Weighted(F1):
main_score = "f1_weighted"
average = "weighted"
class F1MultiLabel(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
metric = "f1"
prediction_type = "List[str]"
single_reference_per_prediction = True
def prepare(self):
super().prepare()
self._metric = evaluate.load(self.metric, "multilabel")
def add_str_to_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return
def get_one_hot_vector(self, labels: List[str]):
result = [0] * len(self.str_to_id)
for label in labels:
if label in self.str_to_id:
result[self.str_to_id[label]] = 1
return result
def compute(
self,
references: List[List[str]],
predictions: List[List[str]],
task_data: List[Dict],
) -> dict:
self.str_to_id = {}
self.id_to_str = {}
references = [reference[0] for reference in references]
labels = list({label for reference in references for label in reference})
# if no classes are left then F1 is not defined
if len(labels) == 0:
return {self.main_score: float("nan")}
for label in labels:
self.add_str_to_id(label)
formatted_references = [
self.get_one_hot_vector(reference) for reference in references
]
formatted_predictions = [
self.get_one_hot_vector(prediction) for prediction in predictions
]
# There is odd behavior in scikit-learn that when passing a one-hot vector with a single
# element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
# to this class.
if len(labels) == 1:
labels_param = [1]
else:
labels_param = None
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
average=self.average,
labels=labels_param,
)
if isinstance(result[self.metric], numpy.ndarray):
assert (
len(result[self.metric]) == len(labels)
), f"F1 result ({result[self.metric]}) has more entries than labels ({labels})"
final_result = {self.main_score: mean(result[self.metric])}
for i, label in enumerate(labels):
final_result[self.metric + "_" + label] = result[self.metric][i]
else:
final_result = {self.main_score: result[self.metric]}
return final_result
class PrecisionMacroMultiLabel(F1MultiLabel):
main_score = "precision_macro"
metric = "precision"
average = "macro"
class PrecisionMicroMultiLabel(F1MultiLabel):
main_score = "precision_micro"
metric = "precision"
average = "micro"
class RecallMacroMultiLabel(F1MultiLabel):
main_score = "recall_macro"
metric = "recall"
average = "macro"
class RecallMicroMultiLabel(F1MultiLabel):
main_score = "recall_micro"
metric = "recall"
average = "micro"
class F1MicroMultiLabel(F1MultiLabel):
main_score = "f1_micro"
average = "micro"
class F1MacroMultiLabel(F1MultiLabel):
main_score = "f1_macro"
average = None
class Rouge(HuggingfaceMetric):
hf_metric_name = "rouge"
main_score = "rougeL"
scale = 1.0
prediction_type = "str"
single_reference_per_prediction = False # multiple references allowed
use_aggregator: bool = True
rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
sent_split_newline: bool = True
_requirements_list: List[str] = ["nltk", "rouge_score"]
def prepare(self):
super().prepare()
self.hf_compute_args.update(
{"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
)
import nltk
nltk.download("punkt")
self.sent_tokenize = nltk.sent_tokenize
def compute(self, references, predictions, task_data: List[Dict]):
if self.sent_split_newline:
predictions = [
"\n".join(self.sent_tokenize(prediction.strip()))
for prediction in predictions
]
references = [
["\n".join(self.sent_tokenize(r.strip())) for r in reference]
for reference in references
]
return super().compute(references, predictions, task_data)
# Computes char edit distance, ignoring whitespace
class CharEditDistance(InstanceMetric):
main_score = "char_edit_distance"
reduction_map = {"mean": [main_score]}
ci_scores = [main_score]
prediction_type = "str"
single_reference_per_prediction = True
accuracy_metric = False
_requirements_list: List[str] = ["editdistance"]
def prepare(self):
super().prepare()
import editdistance
self.eval = editdistance.eval
def compute(self, references, prediction: str, task_data: List[Dict]) -> dict:
formatted_prediction = "".join(prediction.split())
formatted_reference = "".join(references[0].split())
max_length = max(len(formatted_reference), len(formatted_prediction))
if max_length == 0:
return {self.main_score: 0.0}
edit_dist = self.eval(formatted_reference, formatted_prediction)
if self.accuracy_metric:
score = 1 - edit_dist / max_length
else:
score = edit_dist
return {self.main_score: score}
class CharEditDistanceAccuracy(CharEditDistance):
main_score = "char_edit_dist_accuracy"
reduction_map = {"mean": [main_score]}
ci_scores = [main_score]
accuracy_metric = True
class Wer(HuggingfaceMetric):
hf_metric_name = "wer"
main_score = "wer"
prediction_type = "str"
single_reference_per_prediction = True
_requirements_list: List[str] = ["jiwer"]
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict],
) -> dict:
formatted_references = [reference[0] for reference in references]
result = self.metric.compute(
predictions=predictions, references=formatted_references
)
return {self.main_score: result}
class Spearmanr(HuggingfaceMetric):
hf_metric_name = "spearmanr"
main_score = "spearmanr"
process_single_instances = False
prediction_type = "float"
# Spearmanr references are not list
def _validate_reference(self, reference):
if not isoftype(reference, self.get_prediction_type()):
raise ValueError(
f"Each reference is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received prediction of type {type(reference)}: {reference}"
)
class KendallTauMetric(GlobalMetric):
main_score = "kendalltau_b"
variant = "b"
process_single_instances = False
prediction_type = "str"
_requirements_list: List[str] = ["scipy"]
def prepare(self):
from scipy.stats import kendalltau
self.kendalltau = kendalltau
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict],
) -> dict:
if isinstance(references[0], list):
references = [reference[0] for reference in references]
references = [to_float_or_default(r) for r in references]
predictions = [to_float_or_default(p) for p in predictions]
kendall_results = self.kendalltau(references, predictions, variant=self.variant)
corr = kendall_results.correlation
return {
self.main_score: corr,
f"{self.main_score}_p_val": kendall_results.pvalue,
}
class MatthewsCorrelation(HuggingfaceMetric):
hf_metric_name = "matthews_correlation"
main_score = "matthews_correlation"
str_to_id: dict = InternalField(default_factory=dict)
single_reference_per_prediction = True
prediction_type = "str"
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
return self.str_to_id[str]
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict],
) -> dict:
formatted_references = [
self.get_str_id(reference[0]) for reference in references
]
formatted_predictions = [
self.get_str_id(prediction) for prediction in predictions
]
return self.metric.compute(
predictions=formatted_predictions, references=formatted_references
)
class RocAuc(GlobalMetric):
main_score = "roc_auc"
process_single_instances = False
_requirements_list: List[str] = ["sklearn"]
single_reference_per_prediction = True
prediction_type = "str"
def prepare(self):
from sklearn import metrics
self.roc_curve = metrics.roc_curve
self.auc = metrics.auc
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict],
) -> dict:
if isinstance(references[0], list):
references = [reference[0] for reference in references]
references = [to_float_or_default(r) for r in references]
predictions = [to_float_or_default(p) for p in predictions]
false_positive_rates, true_positive_rates, _ = self.roc_curve(
y_true=references, y_score=predictions
)
roc_auc = self.auc(false_positive_rates, true_positive_rates)
return {self.main_score: roc_auc}
class CustomF1(GlobalMetric):
main_score = "f1_micro"
prediction_type = "Any"
single_reference_per_prediction = True
groups = None
zero_division: float = 0.0
report_per_group_scores: bool = True
@abstractmethod
def get_element_group(self, element, additional_input):
pass
@abstractmethod
def get_element_representation(self, element, additional_input):
pass
def should_ignore_element(self, element, additional_input):
return False
def group_elements(self, elements_list, additional_input):
if not isinstance(elements_list, list):
elements_list = [elements_list]
return {
k: Counter(
[
self.get_element_representation(value, additional_input)
for value in elements_list
if self.get_element_group(value, additional_input) == k
]
)
for k in {
self.get_element_group(e, additional_input)
for e in elements_list
if not self.should_ignore_element(e, additional_input)
}
}
def calculate_groups_ratio(self, actual_group, total_group):
return sum(
[min(actual_group[k], total_group[k]) for k in actual_group.keys()]
), sum(actual_group.values())
def precision(self, pn, pd, rn, rd):
return self.zero_division if pn == 0 and pd == 0 else pn / pd
def recall(self, pn, pd, rn, rd):
return self.zero_division if rn == 0 and rd == 0 else rn / rd
def f1(self, pn, pd, rn, rd):
precision = self.precision(pn, pd, rn, rd)
recall = self.recall(pn, pd, rn, rd)
try:
return 2 * precision * recall / (precision + recall)
except ZeroDivisionError:
return self.zero_division
def get_groups(self, elements, task_data):
groups = set()
for sublist, additional_input in zip(elements, task_data):
if not isinstance(sublist, list):
sublist = [sublist]
for e in sublist:
if self.should_ignore_element(e, additional_input):
continue
groups.add(self.get_element_group(e, additional_input))
return groups
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Dict],
) -> dict:
references = [element[0] for element in references]
if self.groups is None:
groups = self.get_groups(references, task_data)
else:
groups = self.groups
groups_statistics = {}
for references_batch, predictions_batch, additional_input in zip(
references, predictions, task_data
):
grouped_references = self.group_elements(references_batch, additional_input)
grouped_predictions = self.group_elements(
predictions_batch, additional_input
)
all_groups = set(grouped_references.keys()).union(
grouped_predictions.keys()
)
for group in all_groups:
if group not in groups_statistics:
groups_statistics[group] = {
"precision_numerator": 0,
"precision_denominator": 0,
"recall_numerator": 0,
"recall_denominator": 0,
}
references_by_group = grouped_references.get(group, Counter([]))
predictions_by_group = grouped_predictions.get(group, Counter([]))
pn, pd = self.calculate_groups_ratio(
actual_group=predictions_by_group, total_group=references_by_group
)
rn, rd = self.calculate_groups_ratio(
actual_group=references_by_group, total_group=predictions_by_group
)
groups_statistics[group]["precision_numerator"] += pn
groups_statistics[group]["precision_denominator"] += pd
groups_statistics[group]["recall_numerator"] += rn
groups_statistics[group]["recall_denominator"] += rd
num_of_unknown_class_predictions = 0
pn_total = pd_total = rn_total = rd_total = 0
f1_result = {}
recall_result = {}
precision_result = {}
for group in groups_statistics.keys():
pn, pd, rn, rd = (
groups_statistics[group]["precision_numerator"],
groups_statistics[group]["precision_denominator"],
groups_statistics[group]["recall_numerator"],
groups_statistics[group]["recall_denominator"],
)
pn_total, pd_total, rn_total, rd_total = (
pn_total + pn,
pd_total + pd,
rn_total + rn,
rd_total + rd,
)
if group in groups:
f1_result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
recall_result[f"recall_{group}"] = self.recall(pn, pd, rn, rd)
precision_result[f"precision_{group}"] = self.precision(pn, pd, rn, rd)
else:
num_of_unknown_class_predictions += pd
result = f1_result
self.add_macro_scores(f1_result, recall_result, precision_result, result)
self.add_in_class_support_scores(
num_of_unknown_class_predictions, pd_total, result
)
self.add_micro_scores(rd_total, rn_total, pd_total, pn_total, result)
if not self.report_per_group_scores:
for group in groups:
del result[f"f1_{group}"]
return result
def add_micro_scores(self, rd_total, rn_total, pd_total, pn_total, result):
result["f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
result["recall_micro"] = self.recall(pn_total, pd_total, rn_total, rd_total)
result["precision_micro"] = self.precision(
pn_total, pd_total, rn_total, rd_total
)
def add_in_class_support_scores(
self, num_of_unknown_class_predictions, pd_total, result
):
amount_of_predictions = pd_total
if amount_of_predictions == 0:
result["in_classes_support"] = 1.0
else:
result["in_classes_support"] = (
1.0 - num_of_unknown_class_predictions / amount_of_predictions
)
def add_macro_scores(self, f1_result, recall_result, precision_result, result):
try:
result["f1_macro"] = sum(f1_result.values()) / len(result.keys())
result["recall_macro"] = sum(recall_result.values()) / len(
recall_result.keys()
)
result["precision_macro"] = sum(precision_result.values()) / len(
precision_result.keys()
)
except ZeroDivisionError:
result["f1_macro"] = self.zero_division
result["recall_macro"] = self.zero_division
result["precision_macro"] = self.zero_division
class NER(CustomF1):
prediction_type = "List[Tuple[str,str]]"
def get_element_group(self, element, additional_input):
return element[1]
def get_element_representation(self, element, additional_input):
return str(element)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
class TokenOverlap(InstanceMetric):
reduction_map = {"mean": ["f1", "precision", "recall"]}
main_score = "f1"
ci_scores = ["f1", "precision", "recall"]
single_reference_per_prediction = False
prediction_type = "str"
def compute(
self, references: List[Any], prediction: Any, task_data: List[Dict]
) -> dict:
results = [
self._compute_single_ref(str(reference), str(prediction))
for reference in references
]
return {
measure: max(r[i] for r in results)
for i, measure in enumerate(["precision", "recall", "f1"])
}
def _compute_single_ref(
self, reference: Any, prediction: Any
) -> Tuple[float, float, float]:
prediction_tokens = normalize_answer(str(prediction)).split()
reference_tokens = normalize_answer(str(reference)).split()
common = Counter(prediction_tokens) & Counter(reference_tokens)
num_same = sum(common.values())
if num_same == 0:
pr, rc, f1 = 0, 0, 0
else:
pr = 1.0 * num_same / len(prediction_tokens)
rc = 1.0 * num_same / len(reference_tokens)
f1 = (2 * pr * rc) / (pr + rc)
return pr, rc, f1
class BertScore(HuggingfaceBulkMetric):
hf_metric_name = "bertscore"
main_score = "f1"
reduction_map = {"mean": ["f1", "precision", "recall"]}
hf_metric_fields = ["f1", "precision", "recall"]
ci_scores = ["f1", "precision", "recall"]
model_name: str
prediction_type = "str"
_requirements_list: List[str] = ["bert_score"]
def prepare(self):
super().prepare()
self.hf_compute_args = {"model_type": self.model_name, "batch_size": 16}
class SentenceBert(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
_requirements_list: List[str] = ["sentence_transformers", "torch", "transformers"]
def prepare(self):
super().prepare()
import torch
from sentence_transformers import SentenceTransformer
from sentence_transformers import util as sbert_util
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.model = SentenceTransformer(self.model_name, device=self.device)
self.util = sbert_util
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Dict],
) -> List[Dict[str, Any]]:
scores = []
# we are in a multi-reference case (each prediction may have multiple
# references), so we need to flatten the refs in order to compute the
# embeddings in one batch, but first we have to store the spans of
# reference groups, so we can recover it later on.
ref_group_boundaries = []
count = 0
for ref_group in references:
ref_group_boundaries.append((count, count + len(ref_group)))
count += len(ref_group)
# compute s-bert embeddings
preds_emb = self.model.encode(predictions, device=self.device)
refs_emb = self.model.encode(
[ref for ref_group in references for ref in ref_group], device=self.device
)
# for each candidate, pick the reference with the highest score
for pred_emb, ref_group_bounds in zip(preds_emb, ref_group_boundaries):
refs_group_emb = refs_emb[ref_group_bounds[0] : ref_group_bounds[1]]
scores.append(self.util.cos_sim(pred_emb, refs_group_emb).max().item())
return [{"score": score} for score in scores]
class Reward(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
model_name: str
_requirements_list: List[str] = ["transformers", "torch"]
def prepare(self):
super().prepare()
import torch
from transformers import pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.pipe = pipeline(
"text-classification", model=self.model_name, device=device
)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Dict],
) -> List[Dict[str, Any]]:
# treat the references as the questions and the predictions as answers
# assume a single reference
questions = [refs[0] for refs in references]
answers = predictions
# prepare for computation
inputs = [{"text": q, "text_pair": a} for q, a in zip(questions, answers)]
# compute the metric
# add function_to_apply="none" to disable sigmoid
return self.pipe(inputs, batch_size=self.batch_size)
class Detector(BulkInstanceMetric):
reduction_map = {"mean": ["score"]}
main_score = "score"
batch_size: int = 32
prediction_type = "str"
model_name: str
_requirements_list: List[str] = ["transformers", "torch"]
def prepare(self):
super().prepare()
import torch
from transformers import pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.pipe = pipeline(
"text-classification", model=self.model_name, device=device
)
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Dict],
) -> List[Dict[str, Any]]:
# compute the metric
# add function_to_apply="none" to disable sigmoid
return self.pipe(predictions, batch_size=self.batch_size)
class LlamaIndexCorrectness(InstanceMetric):
"""LlamaIndex based metric class for evaluating correctness."""
model_name: str = ""
main_score: str = ""
prediction_type: str = "str"
reduction_map: Dict[str, List[str]] = None
openai_models: List[str] = ["gpt-3.5-turbo"]
anthropic_models: List[
str
] = [] # this is here for the sake of documentation for future models
mock_models: List[str] = ["mock"]
external_api_models = openai_models + anthropic_models
_requirements_list: List[str] = ["llama_index"]
@staticmethod
def _custom_parser(eval_response: str):
"""Default parser function for evaluation response.
Args:
eval_response (str): The response string from the evaluation.
Returns:
Tuple[float, str]: A tuple containing the score as a float and the reasoning as a string.
"""
import re
match = re.search(r"\b\d+\.\d+\b|\b\d+\b", eval_response)
if match:
score = float(match.group())
else:
raise Exception("could not parse judge response")
reasoning_str = "\n".join(eval_response.split("\n")[1:])
reasoning = reasoning_str.lstrip("\n")
return score, reasoning
def _model_using_extrnal_api(self):
return self.model_name in self.external_api_models
def prepare(self):
"""Initialization method for the metric. Initializes the CorrectnessEvaluator with the OpenAI model."""
super().prepare()
self.model_name_normalized = self.model_name.replace(".", "_").replace("-", "_")
self.main_score: str = (
f"correctness_llama_index_by_{self.model_name_normalized}_judge"
)
self.reduction_map: Dict[str, List[str]] = {"mean": [self.main_score]}
from llama_index.core.evaluation import CorrectnessEvaluator
if self.model_name in self.openai_models:
from llama_index.llms.openai import OpenAI
llm = OpenAI("gpt-3.5-turbo")
elif self.model_name in self.mock_models:
from llama_index.core.llms.mock import MockLLM
llm = MockLLM(system_prompt="5") # perfect score
else:
raise NotImplementedError(
f"LlamaIndexCorrectnessMetric does not support {self.model_name}, currently only gpt-3.5-turbo is supported"
)
self.evaluator = CorrectnessEvaluator(
llm=llm, parser_function=self._custom_parser
)
def compute(
self,
references: List[str],
prediction: str,
task_data: Dict,
) -> Dict[str, Any]:
"""Method to compute the correctness metric.
Args:
references (List[str]): List of reference instances.
prediction (str): List of predicted instances.
task_data (Dict): List of additional input data.
Returns:
Dict[str, Any]: List of computed scores and feedback.
Raises:
AssertionError: If the input does not meet the expected format.
"""
# treat the references as the questions and the predictions as answers
# assume a single reference
assert (
not self._model_using_extrnal_api()
or settings.allow_passing_data_to_remote_api
), f"Cannot run send data to remote APIs ({self.model_name}) when unitxt.settings.allow_passing_data_to_remote_api=False. Set UNITXT_ALLOW_PASSING_DATA_TO_REMOTE_API environment variable, if you want to allow this."
query = task_data["question"]
contexts = None
if "contexts" in task_data:
contexts = task_data["contexts"]
per_reference_results = []
for reference_response in references:
per_reference_results.append(
self.evaluator.evaluate(
query=query,
response=prediction,
contexts=contexts,
reference=reference_response,
)
)
result = max([results.score for results in per_reference_results])
return {
self.main_score: result / 5,
# "score_name": self.main_score,
# "feedback": result.feedback, # removed since this cannot be tested
}
class Perplexity(BulkInstanceMetric):
"""Computes the likelihood of generating text Y after text X - P(Y|X)."""
main_score = "perplexity"
reduction_map = {"mean": ["perplexity"]}
prediction_type = "str"
perplexity_prompt: str
batch_size: int = 32
model_name: str
_requirements_list: List[str] = ["transformers", "torch"]
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Dict],
) -> List[Dict[str, Any]]:
"""Computes the likelihood of generating text Y after text X - P(Y|X).
:param predictions: the list of Y texts = the targets of the generation
:param references: the list of list of X texts = the sources of the generation
:return: the likelihood of generating text Y_i after each text X_i_j = P(Y_i|X_i_1), ..., P(Y_i|X_i_n) for every i.
"""
sources = []
targets = []
for prediction, instance_references in zip(predictions, references):
for instance_reference in instance_references:
sources.append(f"{self.perplexity_prompt} {instance_reference}")
targets.append(prediction)
from transformers import AutoConfig
config = AutoConfig.from_pretrained(self.model_name, trust_remote_code=True)
lm = (
self.EncoderDecoderLM(model_name=self.model_name)
if config.is_encoder_decoder is True
else self.DecoderOnlyLM(model_name=self.model_name)
)
# compute P(Q|P) and store in queue
scores = lm.compute_lm(
source=sources, target=targets, batch_size=self.batch_size
)
index = 0
all_instances_scores = []
for instance_references in references:
instance_scores = {}
instance_scores_list = []
for _ in range(len(instance_references)):
instance_scores_list.append(scores[index])
index += 1
instance_scores["reference_scores"] = instance_scores_list
# max seems more useful than mean for common use cases like
# context relevance, where what we want to know is if there
# is at least one good result in the context. Using mean will
# bring the score down due to bad contexts at the tail.
instance_scores[self.main_score] = max(instance_scores_list)
all_instances_scores.append(instance_scores)
return all_instances_scores
class AbstractLM(ABC):
def __init__(self, model_name):
import torch
from transformers import AutoTokenizer
self.model_name = model_name
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.model = (
self.model_class().from_pretrained(self.model_name).to(self.device)
)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
def compute_lm(
self, source: List[str], target: List[str], batch_size: int
) -> List[float]:
import torch
scores = []
with torch.no_grad():
# break the documents to batches
n_batches = int(len(source) / batch_size)
batch_range = range(n_batches + 1)
for batch in batch_range:
batch_source = source[batch * batch_size : (batch + 1) * batch_size]
batch_target = target[batch * batch_size : (batch + 1) * batch_size]
if len(batch_source) > 0:
# tokenize the source and target
tokens_source = self.tokenizer(
batch_source, padding=True, return_tensors="pt"
)
tokens_target = self.tokenizer(
batch_target, padding=True, return_tensors="pt"
)
# compute the logits
logits, labels = self.compute_batch(
tokens_source, tokens_target
)
# logits is a tensor of size: batch_size * len(target) * vocab_size
# because for each example in the batch, the model predicted the
# logit at every position in the target, for every vocab item.
# the model returns mean over all batch. We run the CE again without reduction
# and extract the mean for each document
loss_fct = torch.nn.CrossEntropyLoss(
ignore_index=-100, reduction="none"
)
# logits.size(-1) = the dimension of the vocabulary
# labels.view(-1) = flattens the labels tensor to 1d
loss = loss_fct(
logits.view(-1, logits.size(-1)), labels.view(-1)
)
loss = loss.view(len(batch_source), -1)
# for each document, do mean only over the non zero values (sum(labels>0))
batch_loss = torch.sum(loss, dim=1) / torch.sum(
labels > 0, dim=1
)
# e^-average(cross-entropy-loss(logits) == geometric mean of the probabilities
# proof:
# * CE-loss of logits is computed by transforming the logits to
# probabilities by softmax, and then -log(p) is returned, where
# p is the probability of the gold label.
# * Averaging the CE loss is computed by summing over -log(p) and
# then dividing by the length of the gold labels.
# * Thus, pr_score = (-log(p_1) + ... + -log(p_n)) / n
# = -log(p_1 * ... * p_n) * 1/n
# * Therefore,
# e^(-pr_score) = e^(log(p_1 * ... * p_n) * 1/n)
# = (e^(log(p_1 * ... * p_n))) ^ 1/n
# = p_1 * ... * p_n) ^ 1/n
# = geometric mean of [p_1, ..., p_n]
#
# in principle we could have computed the geometric mean directly over the
# probabilities instead of e^(average cross entropy loss of the logits),
# but the current approach is more stable numerically. See for example:
# https://stackoverflow.com/questions/59722983/how-to-calculate-geometric-mean-in-a-differentiable-way
geometric_mean = (-batch_loss).exp()
# append the batch scores to the list of all scores
scores.append(geometric_mean)
return torch.cat(scores, dim=0).tolist()
@abstractmethod
def model_class(self):
pass
@abstractmethod
def compute_batch(self, tokens_source, tokens_target):
pass
class EncoderDecoderLM(AbstractLM):
def model_class(self):
from transformers import AutoModelForSeq2SeqLM
return AutoModelForSeq2SeqLM
def compute_batch(self, tokens_source, tokens_target):
tokens_docs_ids = tokens_source["input_ids"].to(self.device)
attention = tokens_source["attention_mask"].to(self.device)
labels = tokens_target["input_ids"].to(self.device)
logits = self.model(
input_ids=tokens_docs_ids.long(),
attention_mask=attention.long(),
labels=labels.long(),
).logits
# replace the padding token in the labels by -100
labels[labels == self.tokenizer.pad_token_id] = -100
return logits, labels
class DecoderOnlyLM(AbstractLM):
def model_class(self):
from transformers import AutoModelForCausalLM
return AutoModelForCausalLM
def compute_batch(self, tokens_source, tokens_target):
import torch
tokens = torch.cat(
[tokens_source["input_ids"], tokens_target["input_ids"]], dim=1
)
attention = torch.cat(
[tokens_source["attention_mask"], tokens_target["attention_mask"]],
dim=1,
)
labels = torch.cat(
[
torch.zeros_like(tokens_source["input_ids"]).fill_(-100),
tokens_target["input_ids"],
],
dim=1,
)
# replace the padding token in the labels by -100
labels[labels == self.tokenizer.pad_token_id] = -100
tokens = tokens.to(self.device)
attention = attention.to(self.device)
labels = labels.to(self.device)
# no need to pass labels as we calculate the loss below per document
model_output = self.model(
input_ids=tokens.long(), attention_mask=attention.long()
)
logits = model_output.logits
# in decoder only, the first token is not being generated, it is taken from the input,
# so the model is generating from token 2 to n+1. therefore, we need to skip the last
# logit and the first label.
shifted_logits = logits[..., :-1, :].contiguous()
shifted_labels = labels[..., 1:].contiguous()
return shifted_logits, shifted_labels
class Squad(HuggingfaceMetric):
hf_metric_name = "squad"
main_score = "f1"
scale = 100.0
scaled_fields = ["f1", "exact_match"]
prediction_type = "Dict[str,Any]"
# Squad references are not list, but a dict that contain a field called 'answers/text'
# which is the list of references
def _validate_reference(self, reference):
if not isoftype(reference, self.get_prediction_type()):
raise ValueError(
f"Each reference is expected to be of type '{self.prediction_type}' in {self.get_metric_name()} metric. Received prediction of type {type(reference)}: {reference}"
)
class NDCG(GlobalMetric):
"""Normalized Discounted Cumulative Gain: measures the quality of ranking with respect to ground truth ranking scores.
As this measures ranking, it is a global metric that can only be calculated over groups of instances. In the
common use case where the instances are grouped by different queries, i.e., where the task is to provide a
relevance score for a search result w.r.t. a query, an nDCG score is calculated per each query (specified in the
"query" input field of an instance) and the final score is the average across all queries.
Note that the expected scores are relevance scores (i.e., higher is better) and not rank indices. The absolute
value of the scores is only meaningful for the reference scores; for the predictions, only the ordering of the
scores affects the outcome - for example, predicted scores of [80, 1, 2] and [0.8, 0.5, 0.6] will receive
the same nDCG score w.r.t. a given set of reference scores.
See also https://en.wikipedia.org/wiki/Discounted_cumulative_gain
"""
main_score = "nDCG"
_requirements_list: List[str] = ["sklearn"]
single_reference_per_prediction = True
prediction_type = "Optional[float]"
def prepare(self):
from sklearn.metrics import ndcg_score
super().prepare()
self.eval = ndcg_score
def compute(
self,
references: List[List[Any]],
predictions: List[Any],
task_data: List[Any],
) -> dict:
from collections import defaultdict
query_to_predictions_and_references = defaultdict(lambda: [[], []])
references = [reference[0] for reference in references]
for reference, pred, inputs_dict in zip(references, predictions, task_data):
query = inputs_dict.get("query")
query_to_predictions_and_references[query][0].append(pred)
query_to_predictions_and_references[query][1].append(reference)
scores = []
for q_predictions, q_references in query_to_predictions_and_references.values():
if len(q_references) == 1:
continue
if (
None in q_predictions
): # model failed to predict numeric scores for some instances
numeric_predictions = [
pred for pred in q_predictions if pred is not None
]
if len(numeric_predictions) <= 1: # no meaningful ranking
scores.append(0)
continue
# consider non-numeric model predictions as ranked last
min_value = min(numeric_predictions)
q_predictions = [
1 + (pred - min_value) if pred is not None else 0
for pred in q_predictions
]
scores.append(self.eval([q_references], [q_predictions]))
return {self.main_score: mean(scores) if len(scores) > 0 else np.nan}
class RetrievalMetric(InstanceMetric):
prediction_type = "List[str]"
single_reference_per_prediction = True
def compute(self, references: List[Any], prediction: Any, task_data: Dict) -> dict:
# digest input
pred_ids: List[Any] = prediction
ref_ids: List[Any] = list(dict.fromkeys(references[0]))
# relevance_at_k: 1-based dictionary of indicators (0/1), telling whether
# the doc id retrieved at position k (assuming it is 1-based, so k starts
# from 1) is in the gold doc ids or not.
# For example, assuming that in the retrieved docs we have correct predictions
# at positions 2, 4 and 5 (1-based), the dict will look like:
# {1: 0, 2: 1, 3: 0, 4: 1, 5: 1, ...}
relevance_at_k = {
k + 1: 1 if doc_id in ref_ids else 0 for k, doc_id in enumerate(pred_ids)
}
# relevance_sum_at_k: 1-based dictionary of counts, where the value at k determines
# how many gold doc ids have been observed up to index k.
relevance_sum_at_k = {}
for k, value in relevance_at_k.items():
relevance_sum_at_k[k] = relevance_sum_at_k.get(k - 1, 0) + value
# precision_at_k: the precision of the top k retrieved documents. For example,
# assuming that only 1 out of the first 4 retrieved documents is correct, the
# value at 4 will be 1/4.
precision_at_k = {k: value / k for k, value in relevance_sum_at_k.items()}
# recall_at_k: the recall of the top k retrieved documents. For example,
# assuming that only 2 out of the 3 gold documents are in the top 5 results,
# the value at 5 will be 2/3.
n_refs = len(ref_ids)
recall_at_k = {
k: value / n_refs if n_refs > 0 else 0
for k, value in relevance_sum_at_k.items()
}
# rank - the 1-based index of the first hit of a gold doc id. So 1
# means first position.
rank = 0
for k, relevance in relevance_at_k.items():
if relevance == 1:
rank = k
break
# match_at_k: whether we have a match at the top k retrieved documents
match_at_k = {
k: 1.0 if value > 0 else 0.0 for k, value in relevance_sum_at_k.items()
}
return self._compute(
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
)
@abstractmethod
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
pass
class MRR(RetrievalMetric):
reduction_map = {"mean": ["mrr"]}
main_score = "mrr"
ci_scores = ["mrr"]
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
return {self.main_score: 1 / rank if rank > 0 else 0}
class MAP(RetrievalMetric):
reduction_map = {"mean": ["map"]}
main_score = "map"
ci_scores = ["map"]
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
result = 0
if len(relevance_at_k) > 0:
total = sum(relevance_at_k.values())
if total > 0:
dot = sum(relevance_at_k[k] * precision_at_k[k] for k in relevance_at_k)
result = dot / total
return {self.main_score: result}
class RetrievalAtK(RetrievalMetric):
k_list: List[int]
main_score: str = None
reduction_map: Dict[str, List[str]] = None
def prepare(self):
super().prepare()
self.main_score = self.score_name("match", self.k_list[0])
self.ci_scores = [
self.score_name(measure, k)
for measure in ["precision", "recall", "match"]
for k in self.k_list
]
self.reduction_map = {"mean": self.ci_scores}
@staticmethod
def score_name(measure: str, k: int):
return f"{measure}_at_{k}"
def _compute(
self,
relevance_at_k,
relevance_sum_at_k,
precision_at_k,
recall_at_k,
match_at_k,
rank,
) -> dict:
result = {}
for measure_array, measure_name in [
(precision_at_k, "precision"),
(recall_at_k, "recall"),
(match_at_k, "match"),
]:
max_k = max(measure_array.keys())
for k in self.k_list:
result[self.score_name(measure_name, k)] = measure_array[min(k, max_k)]
return result
class KPA(CustomF1):
prediction_type = "str"
single_reference_per_prediction = True
def get_element_group(self, element, additional_input):
return additional_input["keypoint"]
def get_element_representation(self, element, additional_input):
return additional_input["keypoint"]
def should_ignore_element(self, element, additional_input):
return element == "none"
class RemoteMetric(SingleStreamOperator, Metric):
"""A metric that runs another metric remotely.
main_score: the score updated by this metric.
endpoint: the remote host that supports the remote metric execution.
metric_name: the name of the metric that is executed remotely.
api_key: optional, passed to the remote metric with the input, allows secure authentication.
"""
main_score: str = None
endpoint: str
metric_name: str
api_key: str = None
@staticmethod
def wrap_inner_metric_pipeline_metric(
metric_pipeline: MetricPipeline, remote_metrics_endpoint: str
) -> MetricPipeline:
"""Wrap the inner metric in a MetricPipeline with a RemoteMetric.
When executing the returned MetricPipeline, the inner metric will be computed
remotely (pre and post processing steps in the MetricPipeline will be computed locally).
"""
local_inner_metric = metric_pipeline.metric
metric_pipeline = deepcopy(
metric_pipeline
) # To avoid unintentional changes to the catalog contents
metric_pipeline.metric = RemoteMetric(
main_score=local_inner_metric.main_score,
metric_name=local_inner_metric.__id__,
endpoint=remote_metrics_endpoint,
)
return metric_pipeline
def get_metric_url(self) -> str:
return f"{self.endpoint}/{self.metric_name}"
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
predictions, references, additional_inputs, instances = self.consume_stream(
stream
)
metric_request = self.create_metric_request(
predictions, references, additional_inputs
)
metric_response = self.get_metric_response(metric_request)
self.update_instance_scores(instances, metric_response.instances_scores)
self.set_global_score(instances, metric_response.global_score)
yield from instances
@staticmethod
def create_metric_request(predictions, references, additional_inputs):
instance_inputs = [
InstanceInput(
prediction=prediction,
references=reference,
additional_inputs=additional_input,
)
for prediction, reference, additional_input in zip(
predictions, references, additional_inputs
)
]
return MetricRequest(instance_inputs=instance_inputs)
def get_metric_response(self, metric_request: MetricRequest) -> MetricResponse:
import requests
response = requests.post(
url=self.get_metric_url(),
json=metric_request.to_dict(),
headers={"Authorization": f"Bearer {self.api_key}"},
)
response.raise_for_status()
response_json = response.json()
return MetricResponse(**response_json)
def disable_confidence_interval_calculation(self):
"""Confidence intervals are always disabled for RemoteMetric.
No need to do anything.
"""
pass
def set_n_resamples(self, n_resample):
"""Since confidence intervals are always disabled for remote metrics, this is a no-op."""
pass
def validate_subgroup_types(
subgroup_scores_dict: Dict[str, List],
control_subgroup_types: List[str],
comparison_subgroup_types: List[str],
):
"""Validate a dict of subgroup type instance score lists, and subgroup type lists.
Args:
subgroup_scores_dict: dict where keys are subgroup types and values are lists of instance scores.
control_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the control (baseline) group
comparison_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the group
to be compared to the control group.
Returns:
dict with all NaN scores removed; control_subgroup_types and comparison_subgroup_types will have non-unique elements removed
"""
# note: subgroup_scores_dict is already a defaultdict of lists, so don't need to check that keys in control_ and comparison_subgroup_types exist in it
# remove any NaNs
subgroup_scores_dict.update(
{
subgroup_name: [score for score in score_list if not np.isnan(score)]
for subgroup_name, score_list in subgroup_scores_dict.items()
}
)
assert isinstance(
control_subgroup_types, list
), "control_subgroup_types must be a list"
assert isinstance(
comparison_subgroup_types, list
), "comparison_subgroup_types must be a list"
# make sure each list is unique, so that labels aren't double-counted
control_subgroup_types = list(set(control_subgroup_types))
comparison_subgroup_types = list(set(comparison_subgroup_types))
return subgroup_scores_dict, control_subgroup_types, comparison_subgroup_types
def performance_drop_rate(
subgroup_scores_dict: Dict[str, List],
control_subgroup_types: List[str],
comparison_subgroup_types: List[str],
):
"""Percentage decrease of mean performance on test elements relative to that on a baseline (control).
from https://arxiv.org/pdf/2306.04528.pdf.
Args:
subgroup_scores_dict: dict where keys are subgroup types and values are lists of instance scores.
control_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the control (baseline) group
comparison_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the group
to be compared to the control group.
Returns:
numeric PDR metric.
If only one element (no test set) or the first is 0 (percentage change is undefined) return NaN
otherwise, calculate PDR
"""
(
subgroup_scores_dict,
control_subgroup_types,
comparison_subgroup_types,
) = validate_subgroup_types(
subgroup_scores_dict, control_subgroup_types, comparison_subgroup_types
)
# combine all scores from each label (if there are more than 1 in each group) into a list
group_scores_list = [
np.concatenate(
[subgroup_scores_dict[subgroup_name] for subgroup_name in name_list]
)
for name_list in [control_subgroup_types, comparison_subgroup_types]
]
if any(len(scores) == 0 for scores in group_scores_list):
# no comparison can be made since there is not at least one score per type
return np.nan
control_mean = mean(group_scores_list[0])
comparison_mean = mean(group_scores_list[1])
if control_mean == 0:
# return 0 if comparison is also 0
if comparison_mean == 0:
return 0
return np.nan
# otherwise, take the percentage change (which may also be 0)
return 1 - comparison_mean / control_mean
def interpret_effect_size(x: float):
"""Return a string rule-of-thumb interpretation of an effect size value, as defined by Cohen/Sawilowsky.
See https://en.wikipedia.org/wiki/Effect_size;
Cohen, Jacob (1988). Statistical Power Analysis for the Behavioral Sciences; and
Sawilowsky, S (2009). "New effect size rules of thumb". Journal of Modern Applied Statistical Methods. 8 (2): 467-474.
Value has interpretation of
- essentially 0 if |x| < 0.01
- very small if 0.01 <= |x| < 0.2
- small difference if 0.2 <= |x| < 0.5
- a medium difference if 0.5 <= |x| < 0.8
- a large difference if 0.8 <= |x| < 1.2
- a very large difference if 1.2 <= |x| < 2.0
- a huge difference if 2.0 <= |x|
Args:
x: float effect size value
Returns:
string interpretation
"""
import pandas as pd
# assign a label according to threshold of the absolute value
return pd.cut(
x=[np.abs(x)],
right=False,
bins=[-1, 0.01, 0.2, 0.5, 0.8, 1.2, 2.0, np.Inf],
labels=[
"essentially zero",
"very small",
"small",
"medium",
"large",
"very large",
"huge",
],
)[0]
def normalized_cohens_h(
subgroup_scores_dict: Dict[str, List],
control_subgroup_types: List[str],
comparison_subgroup_types: List[str],
interpret=False,
):
"""Cohen's h effect size between two proportions, normalized to interval [-1,1].
Allows for change-type metric when the baseline is 0 (percentage change, and thus PDR, is undefined)
https://en.wikipedia.org/wiki/Cohen%27s_h
Cohen's h effect size metric between two proportions p2 and p1 is 2 * (arcsin(sqrt(p2)) - arcsin(sqrt(p1))).
h in -pi, pi, with +/-pi representing the largest increase/decrease (p1=0, p2=1), or (p1=1, p2=0).
h=0 is no change. Unlike percentage change, h is defined even if the baseline (p1) is 0.
Assumes the scores are in [0,1], either continuous or binary; hence taking the average of a group of scores yields a proportion..
Calculates the change in the average of the other_scores relative to the average of the baseline_scores. We rescale this to [-1,1] from [-pi,pi] for clarity, where +- 1 are the most extreme changes, and 0 is no change
Interpretation: the original unscaled Cohen's h can be interpreted according to function interpret_effect_size
Thus, the rule of interpreting the effect of the normalized value is to use the same thresholds divided by pi
- essentially 0 if |norm h| < 0.0031831
- very small if 0.0031831 <= |norm h| < 0.06366198
- small difference if 0.06366198 <= |norm h| < 0.15915494
- a medium difference if 0.15915494 <= |norm h| < 0.25464791
- a large difference if 0.25464791 <= |norm h| < 0.38197186
- a very large difference if 0.38197186 <= |norm h| < 0.63661977
- a huge difference if 0.63661977 <= |norm h|
Args:
subgroup_scores_dict: dict where keys are subgroup types and values are lists of instance scores.
control_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the control (baseline) group
comparison_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the group
to be compared to the control group.
interpret: boolean, whether to interpret the significance of the score or not
Returns:
float score between -1 and 1, and a string interpretation if interpret=True
"""
(
subgroup_scores_dict,
control_subgroup_types,
comparison_subgroup_types,
) = validate_subgroup_types(
subgroup_scores_dict, control_subgroup_types, comparison_subgroup_types
)
# requires scores to be in [0,1]
for subgroup_name, score_list in subgroup_scores_dict.items():
assert all(
0 <= score <= 1 for score in score_list
), f"all {subgroup_name} scores must be in [0,1]"
# combine all scores from each label (if there are more than 1 in each group) into a list
group_scores_list = [
np.concatenate(
[subgroup_scores_dict[subgroup_name] for subgroup_name in name_list]
)
for name_list in [control_subgroup_types, comparison_subgroup_types]
]
if any(len(scores) == 0 for scores in group_scores_list):
# no comparison can be made since there is not at least one score per type
h, norm_h = np.nan, np.nan
else:
control_mean = mean(group_scores_list[0])
comparison_mean = mean(group_scores_list[1])
h = 2 * (np.arcsin(np.sqrt(comparison_mean)) - np.arcsin(np.sqrt(control_mean)))
norm_h = np.clip(a=h / np.pi, a_min=-1, a_max=1)
if not interpret:
return norm_h
return norm_h, interpret_effect_size(h)
def normalized_hedges_g(
subgroup_scores_dict: Dict[str, List[float]],
control_subgroup_types: List[str],
comparison_subgroup_types: List[str],
interpret=False,
):
"""Hedge's g effect size between mean of two samples, normalized to interval [-1,1]. Better than Cohen's d for small sample sizes.
Takes into account the variances within the samples, not just the means.
Args:
subgroup_scores_dict: dict where keys are subgroup types and values are lists of instance scores.
control_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the control (baseline) group
comparison_subgroup_types: list of subgroup types (potential keys of subgroup_scores_dict) that are the group
to be compared to the control group.
interpret: boolean, whether to interpret the significance of the score or not
Returns:
float score between -1 and 1, and a string interpretation if interpret=True
"""
(
subgroup_scores_dict,
control_subgroup_types,
comparison_subgroup_types,
) = validate_subgroup_types(
subgroup_scores_dict, control_subgroup_types, comparison_subgroup_types
)
# combine all scores from each label (if there are more than 1 in each group) into a list
group_scores_list = [
np.concatenate(
[subgroup_scores_dict[subgroup_name] for subgroup_name in name_list]
)
for name_list in [control_subgroup_types, comparison_subgroup_types]
]
group_n = [len(scores) for scores in group_scores_list]
if any(nn == 0 for nn in group_n) or all(nn <= 1 for nn in group_n):
# if at least one sample size is 0 for one type, no comparison can be made at all
# if both sample sizes are 1, then the denominator is undefined since divide by n1 + n2 - 2
# so require at least one sample to have > 1 observation, and both to have >= 1.
g, norm_g = np.nan, np.nan
else:
# otherwise, calculate the variances
group_mean = [mean(scores) for scores in group_scores_list]
# sample variance with 1 degree of freedom (denominator n-1); if n=1, return 0 since otherwise throws an error
group_var = [
0.0 if nn == 1 else np.var(scores, ddof=1)
for scores, nn in zip(group_scores_list, group_n)
]
var_total = sum([(nn - 1) * vv for vv, nn in zip(group_var, group_n)])
pooled_sd = np.sqrt(var_total / (sum(group_n) - 2))
max_absolute_value = 5
gmd = float(group_mean[1] - group_mean[0])
if gmd == 0:
# if exactly the same, return 0
g = 0.0
else:
try:
g = gmd / pooled_sd
except ZeroDivisionError:
# return a large effect size to avoid explosion if there is zero variance
g = np.sign(gmd) * max_absolute_value
n = sum(group_n)
if 3 < n < 50:
# small sample adjustment see https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/hedgeg.htm
# the multiplier is 0 if n <= 3
g *= ((n - 3) / (n - 2.25)) * np.sqrt((n - 2) / n)
# clip it at a very large value so it doesn't become infinite if the variance (denominator) is very small or 0
g = float(np.clip(a=g, a_min=-1 * max_absolute_value, a_max=max_absolute_value))
norm_g = g / max_absolute_value
if not interpret:
return norm_g
return norm_g, interpret_effect_size(g)
def mean_subgroup_score(
subgroup_scores_dict: Dict[str, List], subgroup_types: List[str]
):
"""Return the mean instance score for a subset (possibly a single type) of variants (not a comparison).
Args:
subgroup_scores_dict: dict where keys are subgroup types and values are lists of instance scores.
subgroup_types: the keys (subgroup types) for which the average will be computed.
Returns:
float score
"""
subgroup_scores_dict, subgroup_types, _ = validate_subgroup_types(
subgroup_scores_dict, subgroup_types, []
)
# combine all desired subgroup scores
score_list = np.concatenate(
[subgroup_scores_dict[subgroup_name] for subgroup_name in subgroup_types]
)
if len(score_list) == 0:
# no scores to use
return np.nan
return mean(score_list)
# metrics using mean reduction
class GroupMeanAccuracy(Accuracy):
reduction_map = {"group_mean": {"agg_func": ["mean", nan_mean, False]}}
class FixedGroupMeanAccuracy(Accuracy):
# the same as GroupMeanAccuracy, except the groups are fixed and are resampled together
reduction_map = {"group_mean": {"agg_func": ["mean", nan_mean, True]}}
# same as above, now using StringContainment
class GroupMeanStringContainment(StringContainment):
reduction_map = {"group_mean": {"agg_func": ["mean", nan_mean, False]}}
class FixedGroupMeanStringContainment(StringContainment):
# the same as GroupMeanStringContainment, except the groups are fixed and are resampled together
reduction_map = {"group_mean": {"agg_func": ["mean", nan_mean, True]}}
# take only the (fixed) group mean of baseline or other (paraphrases) scores
class FixedGroupMeanBaselineAccuracy(Accuracy):
subgroup_column = "variant_type"
# take mean of "original" variants only
reduction_map = {
"group_mean": {
"agg_func": [
"mean_baseline",
lambda scd: mean_subgroup_score(
subgroup_scores_dict=scd, subgroup_types=["original"]
),
True,
],
}
}
class FixedGroupMeanParaphraseAccuracy(Accuracy):
subgroup_column = "variant_type"
# take mean of "paraphrase" variants only
reduction_map = {
"group_mean": {
"agg_func": [
"mean_paraphrase",
lambda scd: mean_subgroup_score(
subgroup_scores_dict=scd, subgroup_types=["paraphrase"]
),
True,
],
}
}
# same as above but using StringContainment
class FixedGroupMeanBaselineStringContainment(StringContainment):
subgroup_column = "variant_type"
# take mean of "original" variants only
reduction_map = {
"group_mean": {
"agg_func": [
"mean_baseline",
lambda scd: mean_subgroup_score(
subgroup_scores_dict=scd, subgroup_types=["original"]
),
True,
],
}
}
class FixedGroupMeanParaphraseStringContainment(StringContainment):
subgroup_column = "variant_type"
# take mean of "paraphrase" variants only
reduction_map = {
"group_mean": {
"agg_func": [
"mean_paraphrase",
lambda scd: mean_subgroup_score(
subgroup_scores_dict=scd, subgroup_types=["paraphrase"]
),
True,
],
}
}
# using PDR
class FixedGroupPDRParaphraseAccuracy(Accuracy):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"pdr_paraphrase",
lambda scd: performance_drop_rate(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
),
True,
],
}
}
class FixedGroupPDRParaphraseStringContainment(StringContainment):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"pdr_paraphrase",
lambda scd: performance_drop_rate(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
),
True,
],
}
}
class GroupMeanTokenOverlap(TokenOverlap):
reduction_map = {
"group_mean": {
"agg_func": ["mean", nan_mean, False],
"score_fields": ["f1", "precision", "recall"],
}
}
# using Cohens's h for proportions
class FixedGroupNormCohensHParaphraseAccuracy(Accuracy):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"norm_cohens_h_paraphrase",
lambda scd: normalized_cohens_h(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
),
True,
],
}
}
class FixedGroupNormCohensHParaphraseStringContainment(StringContainment):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"norm_cohens_h_paraphrase",
lambda scd: normalized_cohens_h(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
),
True,
],
}
}
# using Hedges' g (takes into account internal variation in group scores)
class FixedGroupNormHedgesGParaphraseAccuracy(Accuracy):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"norm_hedges_g_paraphrase",
lambda scd: normalized_hedges_g(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
),
True,
],
}
}
class FixedGroupNormHedgesGParaphraseStringContainment(StringContainment):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"norm_hedges_g_paraphrase",
lambda scd: normalized_hedges_g(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
),
True,
],
}
}
# for above metrics, take absolute value of group score first; this measures variation in either direction
class FixedGroupAbsvalNormCohensHParaphraseAccuracy(Accuracy):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"absval_norm_cohens_h_paraphrase",
lambda scd: np.abs(
normalized_cohens_h(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
)
),
True,
],
}
}
class FixedGroupAbsvalNormCohensHParaphraseStringContainment(StringContainment):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"absval_norm_cohens_h_paraphrase",
lambda scd: np.abs(
normalized_cohens_h(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
)
),
True,
],
}
}
class FixedGroupAbsvalNormHedgesGParaphraseAccuracy(Accuracy):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"absval_norm_hedges_g_paraphrase",
lambda scd: np.abs(
normalized_hedges_g(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
)
),
True,
],
}
}
class FixedGroupAbsvalNormHedgesGParaphraseStringContainment(StringContainment):
subgroup_column = "variant_type"
reduction_map = {
"group_mean": {
"agg_func": [
"absval_norm_hedges_g_paraphrase",
lambda scd: np.abs(
normalized_hedges_g(
subgroup_scores_dict=scd,
control_subgroup_types=["original"],
comparison_subgroup_types=["paraphrase"],
)
),
True,
],
}
}
class BinaryMaxF1(F1Binary):
"""Calculate the maximal F1 and the decision threshold that achieves it for a binary task with float predictions."""
main_score = "max_f1_binary"
prediction_type = str
single_reference_per_prediction = True
def compute(
self,
references: List[List[str]],
predictions: List[List[str]],
task_data: List[Dict],
) -> dict:
float_predictions = [to_float_or_default(p) for p in predictions]
best_thr = -1
best_f1 = -1
for thr in set(float_predictions):
new_predictions = [
"1" if float_prediction >= thr else "0"
for float_prediction in float_predictions
]
f1 = super().compute(references, new_predictions, task_data)[
self.main_score
]
if f1 > best_f1:
best_f1 = f1
best_thr = thr
return {self.main_score: best_f1, "best_thr_maxf1": best_thr}
class BinaryAccuracy(InstanceMetric):
"""Calculate accuracy for a binary task, using 0.5 as the threshold in the case of float predictions."""
reduction_map = {"mean": ["accuracy_binary"]}
main_score = "accuracy_binary"
ci_scores = ["accuracy_binary"]
pos_classes = {"1", "1.0", "yes", "true"}
threshold = 0.5
prediction_type = "str"
single_reference_per_prediction = True
def compute(
self, references: List[Any], prediction: Any, task_data: List[Dict]
) -> dict:
float_prediction = to_float_or_default(prediction)
prediction = str(int(float_prediction > self.threshold))
references = ["1"] if references[0].lower() in self.pos_classes else ["0"]
result = {self.main_score: float([prediction] == references)}
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
class BinaryMaxAccuracy(GlobalMetric):
"""Calculate the maximal accuracy and the decision threshold that achieves it for a binary task with float predictions."""
process_single_instances = False
main_score = "max_accuracy_binary"
pos_classes = {"1", "1.0", "yes", "true"}
prediction_type = "str"
single_reference_per_prediction = True
def compute(
self,
references: List[List[str]],
predictions: List[List[str]],
task_data: List[Dict],
) -> dict:
float_predictions = [to_float_or_default(p) for p in predictions]
references = [
["1"] if r[0].lower() in self.pos_classes else ["0"] for r in references
]
best_thr = -1
best_acc = -1
for thr in set(float_predictions):
new_predictions = [
"1" if float_prediction >= thr else "0"
for float_prediction in float_predictions
]
acc = np.mean(
[
[prediction] == reference
for prediction, reference in zip(new_predictions, references)
]
)
if acc > best_acc:
best_acc = acc
best_thr = thr
return {self.main_score: best_acc, "best_thr_max_acc": best_thr}
######################
# RerankRecallMetric #
def pytrec_eval_at_k(results, qrels, at_k, metric_name):
import pandas as pd
import pytrec_eval
metric = {}
for k in at_k:
metric[f"{metric_name}@{k}"] = 0.0
metric_string = f"{metric_name}." + ",".join([str(k) for k in at_k])
# print('metric_string = ', metric_string)
evaluator = pytrec_eval.RelevanceEvaluator(
qrels, {"ndcg", metric_string}
) # {map_string, ndcg_string, recall_string, precision_string})
scores = evaluator.evaluate(results)
scores = pd.DataFrame(scores).transpose()
keys = []
column_map = {}
for k in at_k:
keys.append(f"{metric_name}_{k}")
column_map[f"{metric_name}_{k}"] = k
scores[keys].rename(columns=column_map)
return scores
class RerankRecall(GlobalMetric):
"""RerankRecall: measures the quality of reranking with respect to ground truth ranking scores.
This metric measures ranking performance across a dataset. The
references for a query will have a score of 1 for the gold passage
and 0 for all other passages. The model returns scores in [0,1]
for each passage,query pair. This metric measures recall at k by
testing that the predicted score for the gold passage,query pair
is at least the k'th highest for all passages for that query. A
query receives 1 if so, and 0 if not. The 1's and 0's are
averaged across the dataset.
query_id_field selects the field containing the query id for an instance.
passage_id_field selects the field containing the passage id for an instance.
at_k selects the value of k used to compute recall.
"""
main_score = "recall_at_5"
query_id_field: str = "query_id"
passage_id_field: str = "passage_id"
at_k: List[int] = [1, 2, 5]
# This doesn't seem to make sense
n_resamples = None
_requirements_list: List[str] = ["pandas", "pytrec_eval"]
def compute(
self,
references: List[List[str]],
predictions: List[str],
task_data: List[Dict],
):
# Collect relevance score and ref per query/passage pair
results = {}
qrels = {}
for ref, pred, data in zip(references, predictions, task_data):
qid = data[self.query_id_field]
pid = data[self.passage_id_field]
if qid not in results:
results[qid] = {}
qrels[qid] = {}
# Convert string-wrapped float to regular float
try:
results[qid][pid] = float(pred)
except ValueError:
# Card testing feeds nonnumeric values in, so catch that.
results[qid][pid] = np.nan
# There's always a single reference per pid/qid pair
qrels[qid][pid] = int(ref[0])
# Compute recall @ 5
scores = pytrec_eval_at_k(results, qrels, self.at_k, "recall")
# print(scores.describe())
# pytrec returns numpy float32
return {
f"recall_at_{i}": float(scores[f"recall_{i}"].mean()) for i in self.at_k
}
KO_ERROR_MESSAGE = """
Additional dependencies required. To install them, run:
`pip install "sacrebleu[ko]"`.
For MacOS: If error on 'mecab-config' show up during installation ], one should run:
`brew install mecab`
`pip install "sacrebleu[ko]"`
"""
class NormalizedSacrebleu(HuggingfaceMetric):
hf_metric_name = "sacrebleu"
hf_main_score = "score"
prediction_type = "str"
main_score = "sacrebleu"
scale = 100.0
scaled_fields = ["sacrebleu", "precisions"]
hf_additional_input_fields_pass_one_value = ["tokenize"]
_requirements_list = {
"mecab_ko": KO_ERROR_MESSAGE,
"mecab_ko_dic": KO_ERROR_MESSAGE,
}
|