File size: 76,385 Bytes
dcd3b86 45dfa28 dcd3b86 341b917 45dfa28 dcd3b86 8fecbbd 74ba290 8fecbbd 78663de 8fecbbd b7c39fe 8fecbbd dcd3b86 c9c2d08 b7c39fe 74ba290 778ad61 1f5859d 8fecbbd 778ad61 b7c39fe 778ad61 45dfa28 8fecbbd 649f9a8 74ba290 778ad61 74ba290 8fecbbd b7c39fe 778ad61 dcd3b86 1f5859d 78663de 8fecbbd dcd3b86 d292ceb 778ad61 1f5859d 778ad61 dcd3b86 d292ceb 8fecbbd 778ad61 74ba290 dcd3b86 f60252a 74ba290 f60252a 8fecbbd dcd3b86 8fecbbd 78663de dcd3b86 d292ceb 8fecbbd 778ad61 78663de 778ad61 78663de 8fecbbd 78663de 460af71 78663de dcd3b86 78663de 8fecbbd 778ad61 dcd3b86 778ad61 78663de d292ceb 8fecbbd d292ceb 8fecbbd 78663de d292ceb 778ad61 78663de d292ceb 78663de dcd3b86 d292ceb 8fecbbd 778ad61 8fecbbd 78663de 8fecbbd 3d43021 dcd3b86 3d43021 78663de 3d43021 78663de 3d43021 460af71 dcd3b86 78663de 8fecbbd dcd3b86 8fecbbd 78663de dcd3b86 8fecbbd dcd3b86 8fecbbd b868ef2 8fecbbd 78663de 8fecbbd dcd3b86 78663de dcd3b86 460af71 dcd3b86 8fecbbd 460af71 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd 78663de 8fecbbd c9c2d08 b868ef2 78663de 460af71 78663de 460af71 78663de 8fecbbd 460af71 c9c2d08 dcd3b86 c9c2d08 78663de c9c2d08 dcd3b86 e81c49a dcd3b86 c9c2d08 dcd3b86 78663de dcd3b86 c9c2d08 78663de 1f5859d 78663de c9c2d08 78663de c9c2d08 78663de c9c2d08 78663de c9c2d08 78663de c9c2d08 78663de c9c2d08 78663de dcd3b86 78663de dcd3b86 78663de 3494e56 78663de 1f5859d 78663de 1f5859d c9c2d08 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de c9c2d08 dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de c9c2d08 dcd3b86 c9c2d08 8fecbbd 78663de 8fecbbd c9c2d08 78663de c9c2d08 2ec6f71 78663de c9c2d08 460af71 78663de 460af71 78663de c9c2d08 45dfa28 78663de c9c2d08 2ec6f71 c9c2d08 78663de c9c2d08 78663de c9c2d08 78663de c9c2d08 78663de c9c2d08 78663de c9c2d08 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd 778ad61 78663de 8fecbbd 78663de 8fecbbd d292ceb 8fecbbd dcd3b86 8fecbbd d292ceb 78663de 8fecbbd d292ceb 778ad61 8fecbbd dcd3b86 8fecbbd 78663de 8fecbbd 460af71 649f9a8 460af71 649f9a8 460af71 649f9a8 460af71 649f9a8 460af71 649f9a8 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd 45dfa28 8fecbbd dcd3b86 8fecbbd 78663de 8fecbbd 78663de 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd 78663de 8fecbbd 78663de 8fecbbd dcd3b86 8fecbbd 78663de dcd3b86 78663de 8fecbbd 78663de 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd dcd3b86 8fecbbd 78663de dcd3b86 8fecbbd 778ad61 78663de d292ceb 8fecbbd 778ad61 1f5859d 78663de d292ceb 649f9a8 d292ceb 8fecbbd dcd3b86 649f9a8 f60252a dcd3b86 778ad61 78663de 778ad61 dcd3b86 778ad61 649f9a8 778ad61 649f9a8 778ad61 dcd3b86 78663de dcd3b86 d292ceb 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 1f5859d 45dfa28 1f5859d e496326 45dfa28 e496326 1f5859d e496326 1f5859d dcd3b86 1f5859d dcd3b86 1f5859d dcd3b86 1f5859d dcd3b86 78663de dcd3b86 1f5859d dcd3b86 1f5859d dcd3b86 1f5859d dcd3b86 1f5859d dcd3b86 1f5859d dcd3b86 1f5859d dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de dcd3b86 78663de 649f9a8 78663de 649f9a8 78663de 649f9a8 78663de 649f9a8 78663de 649f9a8 460af71 78663de 649f9a8 78663de 649f9a8 78663de dcd3b86 78663de dcd3b86 78663de 778ad61 dcd3b86 778ad61 78663de dcd3b86 78663de dcd3b86 d292ceb 78663de d292ceb 8fecbbd 778ad61 78663de 778ad61 78663de d292ceb 8fecbbd 778ad61 78663de dcd3b86 78663de 778ad61 78663de d292ceb 8fecbbd 778ad61 78663de dcd3b86 778ad61 78663de 8fecbbd 778ad61 78663de d292ceb 78663de 45dfa28 78663de dcd3b86 78663de 460af71 45dfa28 78663de 45dfa28 78663de 45dfa28 78663de 45dfa28 78663de 778ad61 78663de d292ceb 8fecbbd 78663de 778ad61 78663de 778ad61 78663de d292ceb 8fecbbd d292ceb 78663de d292ceb dcd3b86 d292ceb 8fecbbd dcd3b86 78663de dcd3b86 8fecbbd dcd3b86 8fecbbd dcd3b86 e81c49a dcd3b86 8fecbbd 78663de e81c49a 8fecbbd e81c49a 78663de e81c49a 78663de 8fecbbd 341b917 dcd3b86 341b917 dcd3b86 341b917 78663de 341b917 78663de 341b917 dcd3b86 341b917 dcd3b86 341b917 dcd3b86 341b917 dcd3b86 341b917 78663de 341b917 78663de 341b917 78663de 341b917 78663de 341b917 dcd3b86 649f9a8 dcd3b86 649f9a8 dcd3b86 341b917 dcd3b86 341b917 78663de 341b917 74ba290 e81c49a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 |
"""This section describes unitxt operators.
Operators: Building Blocks of Unitxt Processing Pipelines
==============================================================
Within the Unitxt framework, operators serve as the foundational elements used to assemble processing pipelines.
Each operator is designed to perform specific manipulations on dictionary structures within a stream.
These operators are callable entities that receive a MultiStream as input.
The output is a MultiStream, augmented with the operator's manipulations, which are then systematically applied to each instance in the stream when pulled.
Creating Custom Operators
-------------------------------
To enhance the functionality of Unitxt, users are encouraged to develop custom operators.
This can be achieved by inheriting from any of the existing operators listed below or from one of the fundamental :class:`base operators<unitxt.operator>`.
The primary task in any operator development is to implement the `process` function, which defines the unique manipulations the operator will perform.
General or Specelized Operators
--------------------------------
Some operators are specielized in specific task such as:
- :class:`loaders<unitxt.loaders>` for loading data.
- :class:`splitters<unitxt.splitters>` for fixing data splits.
- :class:`struct_data_operators<unitxt.struct_data_operators>` for structured data operators.
Other specelized operators are used by unitxt internally:
- :class:`templates<unitxt.templates>` for verbalizing data examples.
- :class:`formats<unitxt.formats>` for preparing data for models.
The rest of this section is dedicated for general operators.
General Operaotrs List:
------------------------
"""
import collections
import copy
import operator
import uuid
import zipfile
from abc import abstractmethod
from collections import Counter
from copy import deepcopy
from dataclasses import field
from itertools import zip_longest
from random import Random
from typing import (
Any,
Callable,
Dict,
Generator,
Iterable,
List,
Optional,
Tuple,
Union,
)
import requests
from .artifact import Artifact, fetch_artifact
from .dataclass import NonPositionalField, OptionalField
from .dict_utils import dict_delete, dict_get, dict_set, is_subpath
from .operator import (
MultiStream,
MultiStreamOperator,
PackageRequirementsMixin,
PagedStreamOperator,
SequentialOperator,
SideEffectOperator,
SingleStreamOperator,
SingleStreamReducer,
SourceOperator,
StreamingOperator,
StreamInitializerOperator,
StreamInstanceOperator,
)
from .random_utils import new_random_generator
from .settings_utils import get_settings
from .stream import Stream
from .text_utils import nested_tuple_to_string
from .type_utils import isoftype
from .utils import flatten_dict
settings = get_settings()
class FromIterables(StreamInitializerOperator):
"""Creates a MultiStream from a dict of named iterables.
Example:
operator = FromIterables()
ms = operator.process(iterables)
"""
def process(self, iterables: Dict[str, Iterable]) -> MultiStream:
return MultiStream.from_iterables(iterables)
class IterableSource(SourceOperator):
"""Creates a MultiStream from a dict of named iterables.
It is a callable.
Args:
iterables (Dict[str, Iterable]): A dictionary mapping stream names to iterables.
Example:
operator = IterableSource(input_dict)
ms = operator()
"""
iterables: Dict[str, Iterable]
def process(self) -> MultiStream:
return MultiStream.from_iterables(self.iterables)
class MapInstanceValues(StreamInstanceOperator):
"""A class used to map instance values into other values.
This class is a type of StreamInstanceOperator,
it maps values of instances in a stream using predefined mappers.
Attributes:
mappers (Dict[str, Dict[str, str]]): The mappers to use for mapping instance values.
Keys are the names of the fields to be mapped, and values are dictionaries
that define the mapping from old values to new values.
strict (bool): If True, the mapping is applied strictly. That means if a value
does not exist in the mapper, it will raise a KeyError. If False, values
that are not present in the mapper are kept as they are.
process_every_value (bool): If True, all fields to be mapped should be lists, and the mapping
is to be applied to their individual elements. If False, mapping is only applied to a field
containing a single value.
Examples:
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}})
replaces '1' with 'hi' and '2' with 'bye' in field 'a' in all instances of all streams:
instance {"a":"1", "b": 2} becomes {"a":"hi", "b": 2}.
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, process_every_element=True)
Assuming field 'a' is a list of values, potentially including "1"-s and "2"-s, this replaces
each such "1" with "hi" and "2" -- with "bye" in all instances of all streams:
instance {"a": ["1", "2"], "b": 2} becomes {"a": ["hi", "bye"], "b": 2}.
MapInstanceValues(mappers={"a": {"1": "hi", "2": "bye"}}, strict=True)
To ensure that all values of field 'a' are mapped in every instance, use strict=True.
Input instance {"a":"3", "b": 2} will raise an exception per the above call,
because "3" is not a key in the mapper of "a".
MapInstanceValues(mappers={"a": {str([1,2,3,4]): 'All', str([]): 'None'}}, strict=True)
replaces a list [1,2,3,4] with the string 'All' and an empty list by string 'None'.
Note that mapped values are defined by their string representation, so mapped values
must be converted to strings.
"""
mappers: Dict[str, Dict[str, str]]
strict: bool = True
use_query: bool = False
process_every_value: bool = False
def verify(self):
# make sure the mappers are valid
for key, mapper in self.mappers.items():
assert isinstance(
mapper, dict
), f"Mapper for given field {key} should be a dict, got {type(mapper)}"
for k in mapper.keys():
assert isinstance(
k, str
), f'Key "{k}" in mapper for field "{key}" should be a string, got {type(k)}'
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for key, mapper in self.mappers.items():
value = dict_get(instance, key, use_dpath=self.use_query)
if value is not None:
if (self.process_every_value is True) and (not isinstance(value, list)):
raise ValueError(
f"'process_every_field' == True is allowed only when all fields which have mappers, i.e., {list(self.mappers.keys())} are lists. Instance = {instance}"
)
if isinstance(value, list) and self.process_every_value:
for i, val in enumerate(value):
value[i] = self.get_mapped_value(instance, key, mapper, val)
else:
value = self.get_mapped_value(instance, key, mapper, value)
dict_set(
instance,
key,
value,
use_dpath=self.use_query,
)
return instance
def get_mapped_value(self, instance, key, mapper, val):
val_as_str = str(val) # make sure the value is a string
if self.strict and (val_as_str not in mapper):
raise KeyError(
f"value '{val}' in instance '{instance}' is not found in mapper '{mapper}', associated with field '{key}'."
)
# By default deep copy the value in mapper to avoid shared modifications
if val_as_str in mapper:
return deepcopy(mapper[val_as_str])
return val
class FlattenInstances(StreamInstanceOperator):
"""Flattens each instance in a stream, making nested dictionary entries into top-level entries.
Args:
parent_key (str): A prefix to use for the flattened keys. Defaults to an empty string.
sep (str): The separator to use when concatenating nested keys. Defaults to "_".
"""
parent_key: str = ""
sep: str = "_"
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
return flatten_dict(instance, parent_key=self.parent_key, sep=self.sep)
class AddFields(StreamInstanceOperator):
"""Adds specified fields to each instance in a given stream or all streams (default) If fields exist, updates them.
Args:
fields (Dict[str, object]): The fields to add to each instance.
use_query (bool) : Use '/' to access inner fields
use_deepcopy (bool) : Deep copy the input value to avoid later modifications
Examples:
# Add a 'classes' field with a value of a list "positive" and "negative" to all streams
AddFields(fields={"classes": ["positive","negatives"]})
# Add a 'start' field under the 'span' field with a value of 0 to all streams
AddFields(fields={"span/start": 0}
# Add a 'classes' field with a value of a list "positive" and "negative" to 'train' stream
AddFields(fields={"classes": ["positive","negatives"], apply_to_stream=["train"]})
# Add a 'classes' field on a given list, prevent modification of original list
# from changing the instance.
AddFields(fields={"classes": alist}), use_deepcopy=True)
# if now alist is modified, still the instances remain intact.
"""
fields: Dict[str, object]
use_query: bool = False
use_deepcopy: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
if self.use_query:
for key, value in self.fields.items():
if self.use_deepcopy:
value = deepcopy(value)
dict_set(instance, key, value, use_dpath=self.use_query)
else:
if self.use_deepcopy:
self.fields = deepcopy(self.fields)
instance.update(self.fields)
return instance
class RemoveFields(StreamInstanceOperator):
"""Remove specified fields from each instance in a stream.
Args:
fields (List[str]): The fields to remove from each instance.
"""
fields: List[str]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for field_name in self.fields:
del instance[field_name]
return instance
class InstanceFieldOperator(StreamInstanceOperator):
"""A general stream instance operator that processes the values of a field (or multiple ones).
Args:
field (Optional[str]): The field to process, if only a single one is passed. Defaults to None
to_field (Optional[str]): Field name to save result into, if only one field is processed, if None is passed the
operation would happen in-place and its result would replace the value of "field". Defaults to None
field_to_field (Optional[Union[List[List[str]], Dict[str, str]]]): Mapping from names of fields to process,
to names of fields to save the results into. Inner List, if used, should be of length 2.
A field is processed by feeding its value into method 'process_value' and storing the result in to_field that
is mapped to the field.
When the type of argument 'field_to_field' is List, the order by which the fields are processed is their order
in the (outer) List. But when the type of argument 'field_to_field' is Dict, there is no uniquely determined
order. The end result might depend on that order if either (1) two different fields are mapped to the same
to_field, or (2) a field shows both as a key and as a value in different mappings.
The operator throws an AssertionError in either of these cases.
field_to_field defaults to None
process_every_value (bool): Processes the values in a list instead of the list as a value, similar to *var. Defaults to False
use_query (bool): Whether to use dpath style queries. Defaults to False.
Note: if 'field' and 'to_field' (or both members of a pair in 'field_to_field') are equal (or share a common
prefix if 'use_query'=True), then the result of the operation is saved within 'field'
"""
field: Optional[str] = None
to_field: Optional[str] = None
field_to_field: Optional[Union[List[List[str]], Dict[str, str]]] = None
process_every_value: bool = False
use_query: bool = False
get_default: Any = None
not_exist_ok: bool = False
def verify(self):
super().verify()
assert (
self.field is not None or self.field_to_field is not None
), "Must supply a field to work on"
assert (
self.to_field is None or self.field_to_field is None
), f"Can not apply operator to create both on {self.to_field} and on the mapping from fields to fields {self.field_to_field}"
assert (
self.field is None or self.field_to_field is None
), f"Can not apply operator both on {self.field} and on the from fields in the mapping {self.field_to_field}"
assert self._field_to_field, f"the from and to fields must be defined or implied from the other inputs got: {self._field_to_field}"
assert (
len(self._field_to_field) > 0
), f"'input argument 'field_to_field' should convey at least one field to process. Got {self.field_to_field}"
# self._field_to_field is built explicitly by pairs, or copied from argument 'field_to_field'
if self.field_to_field is None:
return
# for backward compatibility also allow list of tuples of two strings
if isoftype(self.field_to_field, List[List[str]]) or isoftype(
self.field_to_field, List[Tuple[str, str]]
):
for pair in self._field_to_field:
assert (
len(pair) == 2
), f"when 'field_to_field' is defined as a list of lists, the inner lists should all be of length 2. {self.field_to_field}"
# order of field processing is uniquely determined by the input field_to_field when a list
return
if isoftype(self.field_to_field, Dict[str, str]):
if len(self.field_to_field) < 2:
return
for ff, tt in self.field_to_field.items():
for f, t in self.field_to_field.items():
if f == ff:
continue
assert (
t != ff
), f"In input argument 'field_to_field': {self.field_to_field}, field {f} is mapped to field {t}, while the latter is mapped to {tt}. Whether {f} or {t} is processed first might impact end result."
assert (
tt != t
), f"In input argument 'field_to_field': {self.field_to_field}, two different fields: {ff} and {f} are mapped to field {tt}. Whether {ff} or {f} is processed last might impact end result."
return
raise ValueError(
"Input argument 'field_to_field': {self.field_to_field} is neither of type List{List[str]] nor of type Dict[str, str]."
)
@abstractmethod
def process_instance_value(self, value: Any, instance: Dict[str, Any]):
pass
def prepare(self):
super().prepare()
# prepare is invoked before verify, hence must make some checks here, before the changes done here
assert (
(self.field is None) != (self.field_to_field is None)
), "Must uniquely define the field to work on, through exactly one of either 'field' or 'field_to_field'"
assert (
self.to_field is None or self.field_to_field is None
), f"Can not apply operator to create both {self.to_field} and the to fields in the mapping {self.field_to_field}"
if self.field_to_field is None:
self._field_to_field = [
(self.field, self.to_field if self.to_field is not None else self.field)
]
else:
self._field_to_field = (
list(self.field_to_field.items())
if isinstance(self.field_to_field, dict)
else self.field_to_field
)
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for from_field, to_field in self._field_to_field:
try:
old_value = dict_get(
instance,
from_field,
use_dpath=self.use_query,
default=self.get_default,
not_exist_ok=self.not_exist_ok,
)
except Exception as e:
raise ValueError(
f"Failed to get '{from_field}' from {instance} due to : {e}"
) from e
try:
if self.process_every_value:
new_value = [
self.process_instance_value(value, instance)
for value in old_value
]
else:
new_value = self.process_instance_value(old_value, instance)
except Exception as e:
raise ValueError(
f"Failed to process '{from_field}' from {instance} due to : {e}"
) from e
dict_set(
instance,
to_field,
new_value,
use_dpath=self.use_query,
not_exist_ok=True,
)
return instance
class FieldOperator(InstanceFieldOperator):
def process_instance_value(self, value: Any, instance: Dict[str, Any]):
return self.process_value(value)
@abstractmethod
def process_value(self, value: Any) -> Any:
pass
class RenameFields(FieldOperator):
"""Renames fields.
Move value from one field to another, potentially, if 'use_query'=True, from one branch into another.
Remove the from field, potentially part of it in case of use_query.
Examples:
RenameFields(field_to_field={"b": "c"})
will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": 2}, {"a": 2, "c": 3}]
RenameFields(field_to_field={"b": "c/d"}, use_query=True)
will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "c": {"d": 2}}, {"a": 2, "c": {"d": 3}}]
RenameFields(field_to_field={"b": "b/d"}, use_query=True)
will change inputs [{"a": 1, "b": 2}, {"a": 2, "b": 3}] to [{"a": 1, "b": {"d": 2}}, {"a": 2, "b": {"d": 3}}]
RenameFields(field_to_field={"b/c/e": "b/d"}, use_query=True)
will change inputs [{"a": 1, "b": {"c": {"e": 2, "f": 20}}}] to [{"a": 1, "b": {"c": {"f": 20}, "d": 2}}]
"""
def process_value(self, value: Any) -> Any:
return value
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
res = super().process(instance=instance, stream_name=stream_name)
for from_field, to_field in self._field_to_field:
if (not is_subpath(from_field, to_field)) and (
not is_subpath(to_field, from_field)
):
dict_delete(res, from_field, remove_empty_ancestors=True)
return res
class AddConstant(FieldOperator):
"""Adds a constant, being argument 'add', to the processed value.
Args:
add: the constant to add.
"""
add: Any
def process_value(self, value: Any) -> Any:
return self.add + value
class Augmentor(StreamInstanceOperator):
"""A stream operator that augments the values of either the task input fields before rendering with the template, or the input passed to the model after rendering of the template.
Args:
augment_model_input: Whether to augment the input to the model.
augment_task_input: Whether to augment the task input fields. The specific fields are defined in the FormTask operator.
"""
augment_task_input: bool = False
augment_model_input: bool = False
def verify(self):
assert not (
self.augment_task_input and self.augment_model_input
), "Augmentor must set either 'augment_task_input' and 'augment_model_input' but not both"
assert (
self.augment_task_input or self.augment_model_input
), "Augmentor must set either 'augment_task_input' or 'augment_model_input'"
super().verify()
@abstractmethod
def process_value(self, value: Any) -> Any:
pass
def prepare(self):
pass
def set_task_input_fields(self, task_input_fields: List[str]):
self._task_input_fields = [
"inputs/" + task_input_field for task_input_field in task_input_fields
]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
if self.augment_task_input:
assert (
len(self._task_input_fields) > 0
), "No augmentable input fields were defined in FormTask, and augmentation was requested. Specify the fields to augment in 'argumentable_inputs' attribute of the FormTask."
fields = self._task_input_fields
assert not self.augment_model_input
if self.augment_model_input:
fields = ["source"]
assert not self.augment_task_input
for field_name in fields:
try:
old_value = dict_get(
instance,
field_name,
use_dpath=True,
default="",
not_exist_ok=False,
)
except ValueError as e:
raise TypeError(f"Failed to get {field_name} from {instance}") from e
try:
new_value = self.process_value(old_value)
except Exception as e:
raise RuntimeError(
f"Error augmenting value '{old_value}' from '{field_name}' in instance: {instance}"
) from e
dict_set(instance, field_name, new_value, use_dpath=True, not_exist_ok=True)
return instance
class NullAugmentor(Augmentor):
"""Does not change the input string."""
def verify(self):
pass
def process_value(self, value: Any) -> Any:
return value
class AugmentWhitespace(Augmentor):
"""Augments the inputs by replacing existing whitespaces with other whitespaces.
Currently, each whitespace is replaced by a random choice of 1-3 whitespace characters (space, tab, newline).
"""
def process_value(self, value: Any) -> Any:
import re
words = re.split(r"(\s+)", value)
new_value = ""
random_generator = new_random_generator(sub_seed=value)
for word in words:
if word.isspace():
new_value += random_generator.choice(
["\n", "\t", " "]
) * random_generator.randint(1, 3)
else:
new_value += word
return new_value
class AugmentPrefixSuffix(Augmentor):
r"""Augments the input by prepending and appending to it a randomly selected (typically, whitespace) patterns.
Args:
prefixes, suffixes (list or dict) : the potential (typically, whitespace) patterns to select from.
The dictionary version allows to specify relative weights of the different patterns.
prefix_len, suffix_len (positive int) : The added prefix or suffix will be of length
prefix_len of suffix_len, respectively, repetitions of the randomly selected patterns.
remove_existing_whitespaces : allows to first clean any existing leading and trailing whitespaces.
The strings made of repetitions of the selected pattern(s) are then prepended and/or appended to the potentially
trimmed input.
If only one of prefixes/suffixes is needed, set the other to None.
Examples:
To prepend the input with a prefix made of 4 '\n'-s or '\t'-s, employ
AugmentPrefixSuffix(augment_model_input=True, prefixes=['\n','\t'], prefix_len=4, suffixes = None)
To append the input with a suffix made of 3 '\n'-s or '\t'-s, with triple '\n' suffixes
being preferred over triple '\t', at 2:1 ratio, employ
AugmentPrefixSuffix(augment_model_input=True, suffixes={'\n':2,'\t':1}, suffix_len=3, prefixes = None)
which will append '\n'-s twice as often as '\t'-s.
"""
prefixes: Optional[Union[List[str], Dict[str, int]]] = {
" ": 20,
"\\t": 10,
"\\n": 40,
"": 30,
}
prefix_len: Optional[int] = 3
suffixes: Optional[Union[List[str], Dict[str, int]]] = {
" ": 20,
"\\t": 10,
"\\n": 40,
"": 30,
}
suffix_len: Optional[int] = 3
remove_existing_whitespaces: Optional[bool] = False
def verify(self):
assert (
self.prefixes or self.suffixes
), "At least one of prefixes/suffixes should be not None."
for arg, arg_name in zip(
[self.prefixes, self.suffixes], ["prefixes", "suffixes"]
):
assert (
arg is None or isoftype(arg, List[str]) or isoftype(arg, Dict[str, int])
), f"Argument {arg_name} should be either None or a list of strings or a dictionary str->int. {arg} is none of the above."
assert (
self.prefix_len > 0
), f"prefix_len must be positive, got {self.prefix_len}"
assert (
self.suffix_len > 0
), f"suffix_len must be positive, got {self.suffix_len}"
super().verify()
def _calculate_distributions(self, prefs_or_suffs):
if prefs_or_suffs is None:
return None, None
patterns = (
prefs_or_suffs
if isinstance(prefs_or_suffs, list)
else [k for k, v in prefs_or_suffs.items()]
)
total_weight = (
len(patterns)
if isinstance(prefs_or_suffs, list)
else sum([v for k, v in prefs_or_suffs.items()])
)
weights = (
[1.0 / total_weight] * len(patterns)
if isinstance(prefs_or_suffs, list)
else [float(prefs_or_suffs[p]) / total_weight for p in patterns]
)
return patterns, weights
def prepare(self):
# Being an artifact, prepare is invoked before verify. Here we need verify before the actions
self.verify()
self._prefix_pattern_distribution = {"length": self.prefix_len}
self._suffix_pattern_distribution = {"length": self.suffix_len}
(
self._prefix_pattern_distribution["patterns"],
self._prefix_pattern_distribution["weights"],
) = self._calculate_distributions(self.prefixes)
(
self._suffix_pattern_distribution["patterns"],
self._suffix_pattern_distribution["weights"],
) = self._calculate_distributions(self.suffixes)
super().prepare()
def _get_random_pattern(
self, pattern_distribution, random_generator: Random
) -> str:
string_to_add = ""
if pattern_distribution["patterns"]:
string_to_add = "".join(
random_generator.choices(
pattern_distribution["patterns"],
pattern_distribution["weights"],
k=pattern_distribution["length"],
)
)
return string_to_add
def process_value(self, value: Any) -> Any:
assert value is not None, "input value should not be None"
new_value = str(value)
if self.remove_existing_whitespaces:
new_value = new_value.strip()
random_generator = new_random_generator(sub_seed=value)
prefix = self._get_random_pattern(
self._prefix_pattern_distribution, random_generator
)
suffix = self._get_random_pattern(
self._suffix_pattern_distribution, random_generator
)
return prefix + new_value + suffix
class ShuffleFieldValues(FieldOperator):
"""Shuffles a list of values found in a field."""
def process_value(self, value: Any) -> Any:
res = list(value)
random_generator = new_random_generator(sub_seed=res)
random_generator.shuffle(res)
return res
class JoinStr(FieldOperator):
"""Joins a list of strings (contents of a field), similar to str.join().
Args:
separator (str): text to put between values
"""
separator: str = ","
def process_value(self, value: Any) -> Any:
return self.separator.join(str(x) for x in value)
class Apply(StreamInstanceOperator):
"""A class used to apply a python function and store the result in a field.
Args:
function (str): name of function.
to_field (str): the field to store the result
additional arguments are field names passed to the function
Examples:
Store in field "b" the uppercase string of the value in field "a"
Apply("a", function=str.upper, to_field="b")
Dump the json representation of field "t" and store back in the same field.
Apply("t", function=json.dumps, to_field="t")
Set the time in a field 'b'.
Apply(function=time.time, to_field="b")
"""
__allow_unexpected_arguments__ = True
function: Callable = NonPositionalField(required=True)
to_field: str = NonPositionalField(required=True)
def function_to_str(self, function: Callable) -> str:
parts = []
if hasattr(function, "__module__"):
parts.append(function.__module__)
if hasattr(function, "__qualname__"):
parts.append(function.__qualname__)
else:
parts.append(function.__name__)
return ".".join(parts)
def str_to_function(self, function_str: str) -> Callable:
parts = function_str.split(".", 1)
if len(parts) == 1:
return __builtins__[parts[0]]
module_name, function_name = parts
if module_name in __builtins__:
obj = __builtins__[module_name]
elif module_name in globals():
obj = globals()[module_name]
else:
obj = __import__(module_name)
for part in function_name.split("."):
obj = getattr(obj, part)
return obj
def prepare(self):
super().prepare()
if isinstance(self.function, str):
self.function = self.str_to_function(self.function)
self._init_dict["function"] = self.function_to_str(self.function)
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
argv = [instance[arg] for arg in self._argv]
kwargs = {key: instance[val] for key, val in self._kwargs}
result = self.function(*argv, **kwargs)
instance[self.to_field] = result
return instance
class ListFieldValues(StreamInstanceOperator):
"""Concatenates values of multiple fields into a list, and assigns it to a new field."""
fields: List[str]
to_field: str
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
values = []
for field_name in self.fields:
values.append(dict_get(instance, field_name, use_dpath=self.use_query))
instance[self.to_field] = values
return instance
class ZipFieldValues(StreamInstanceOperator):
"""Zips values of multiple fields in a given instance, similar to list(zip(*fields)).
The value in each of the specified 'fields' is assumed to be a list. The lists from all 'fields'
are zipped, and stored into 'to_field'.
If 'longest'=False, the length of the zipped result is determined by the shortest input value.
If 'longest'=False, the length of the zipped result is determined by the longest input, padding shorter
inputs with None -s.
"""
fields: List[str]
to_field: str
longest: bool = False
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
values = []
for field_name in self.fields:
values.append(dict_get(instance, field_name, use_dpath=self.use_query))
if self.longest:
zipped = zip_longest(*values)
else:
zipped = zip(*values)
instance[self.to_field] = list(zipped)
return instance
class IndexOf(StreamInstanceOperator):
"""For a given instance, finds the offset of value of field 'index_of', within the value of field 'search_in'."""
search_in: str
index_of: str
to_field: str
use_query: bool = False
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
lst = dict_get(instance, self.search_in, use_dpath=self.use_query)
item = dict_get(instance, self.index_of, use_dpath=self.use_query)
instance[self.to_field] = lst.index(item)
return instance
class TakeByField(StreamInstanceOperator):
"""From field 'field' of a given instance, select the member indexed by field 'index', and store to field 'to_field'."""
field: str
index: str
to_field: str = None
use_query: bool = False
def prepare(self):
if self.to_field is None:
self.to_field = self.field
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
value = dict_get(instance, self.field, use_dpath=self.use_query)
index_value = dict_get(instance, self.index, use_dpath=self.use_query)
instance[self.to_field] = value[index_value]
return instance
class Perturb(FieldOperator):
"""Slightly perturbs the contents of 'field'. Could be Handy for imitating prediction from given target.
When task was classification, argument 'select_from' can be used to list the other potential classes, as a
relevant perturbation
"""
select_from: List[Any] = []
percentage_to_perturb: int = 1 # 1 percent
def verify(self):
assert (
0 <= self.percentage_to_perturb and self.percentage_to_perturb <= 100
), f"'percentage_to_perturb' should be in the range 0..100. Received {self.percentage_to_perturb}"
def prepare(self):
super().prepare()
self.random_generator = new_random_generator(sub_seed="CopyWithPerturbation")
def process_value(self, value: Any) -> Any:
perturb = self.random_generator.randint(1, 100) <= self.percentage_to_perturb
if not perturb:
return value
if value in self.select_from:
# 80% of cases, return a decent class, otherwise, perturb the value itself as follows
if self.random_generator.random() < 0.8:
return self.random_generator.choice(self.select_from)
if isinstance(value, float):
return value * (0.5 + self.random_generator.random())
if isinstance(value, int):
perturb = 1 if self.random_generator.random() < 0.5 else -1
return value + perturb
if isinstance(value, str):
if len(value) < 2:
# give up perturbation
return value
# throw one char out
prefix_len = self.random_generator.randint(1, len(value) - 1)
return value[:prefix_len] + value[prefix_len + 1 :]
# and in any other case:
return value
class CopyFields(FieldOperator):
"""Copies values from specified fields to specified fields.
Args (of parent class):
field_to_field (Union[List[List], Dict[str, str]]): A list of lists, where each sublist contains the source field and the destination field, or a dictionary mapping source fields to destination fields.
use_query (bool): Whether to use dpath for accessing fields. Defaults to False.
Examples:
An input instance {"a": 2, "b": 3}, when processed by
CopyField(field_to_field={"a": "b"}
would yield {"a": 2, "b": 2}, and when processed by
CopyField(field_to_field={"a": "c"} would yield
{"a": 2, "b": 3, "c": 2}
with use_query=True, we can also copy inside the field:
CopyFields(field_to_field={"a/0": "a"}, use_query=True)
would process instance {"a": [1, 3]} into {"a": 1}
"""
def process_value(self, value: Any) -> Any:
return copy.deepcopy(value)
class GetItemByIndex(FieldOperator):
"""Get from the item list by the index in the field."""
items_list: List[Any]
def process_value(self, value: Any) -> Any:
return self.items_list[value]
class AddID(StreamInstanceOperator):
"""Stores a unique id value in the designated 'id_field_name' field of the given instance."""
id_field_name: str = "id"
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance[self.id_field_name] = str(uuid.uuid4()).replace("-", "")
return instance
class CastFields(StreamInstanceOperator):
"""Casts specified fields to specified types.
Args:
use_nested_query (bool): Whether to cast nested fields, expressed in dpath. Defaults to False.
fields (Dict[str, str]): A dictionary mapping field names to the names of the types to cast the fields to.
e.g: "int", "str", "float", "bool". Basic names of types
defaults (Dict[str, object]): A dictionary mapping field names to default values for cases of casting failure.
process_every_value (bool): If true, all fields involved must contain lists, and each value in the list is then casted. Defaults to False.
Examples:
CastFields(
fields={"a/d": "float", "b": "int"},
failure_defaults={"a/d": 0.0, "b": 0},
process_every_value=True,
use_nested_query=True
)
would process the input instance: {"a": {"d": ["half", "0.6", 1, 12]}, "b": ["2"]}
into {"a": {"d": [0.0, 0.6, 1.0, 12.0]}, "b": [2]}
"""
fields: Dict[str, str] = field(default_factory=dict)
failure_defaults: Dict[str, object] = field(default_factory=dict)
use_nested_query: bool = False
process_every_value: bool = False
def prepare(self):
self.types = {"int": int, "float": float, "str": str, "bool": bool}
def _cast_single(self, value, type, field):
try:
return self.types[type](value)
except Exception as e:
if field not in self.failure_defaults:
raise ValueError(
f'Failed to cast field "{field}" with value {value} to type "{type}", and no default value is provided.'
) from e
return self.failure_defaults[field]
def _cast_multiple(self, values, type, field):
return [self._cast_single(value, type, field) for value in values]
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for field_name, type in self.fields.items():
value = dict_get(instance, field_name, use_dpath=self.use_nested_query)
if self.process_every_value:
assert isinstance(
value, list
), f"'process_every_value' can be set to True only for fields that contain lists, whereas in instance {instance}, the contents of field '{field_name}' is of type '{type(value)}'"
casted_value = self._cast_multiple(value, type, field_name)
else:
casted_value = self._cast_single(value, type, field_name)
dict_set(
instance, field_name, casted_value, use_dpath=self.use_nested_query
)
return instance
class DivideAllFieldsBy(StreamInstanceOperator):
"""Recursively reach down to all fields that are float, and divide each by 'divisor'.
The given instance is viewed as a tree whose internal nodes are dictionaries and lists, and
the leaves are either 'float' and then divided, or other basic type, in which case, a ValueError is raised
if input flag 'strict' is True, or -- left alone, if 'strict' is False.
Args:
divisor (float) the value to divide by
strict (bool) whether to raise an error upon visiting a leaf that is not float. Defaults to False.
Example:
when instance {"a": 10.0, "b": [2.0, 4.0, 7.0], "c": 5} is processed by operator:
operator = DivideAllFieldsBy(divisor=2.0)
the output is: {"a": 5.0, "b": [1.0, 2.0, 3.5], "c": 5}
If the operator were defined with strict=True, through:
operator = DivideAllFieldsBy(divisor=2.0, strict=True),
the processing of the above instance would raise a ValueError, for the integer at "c".
"""
divisor: float = 1.0
strict: bool = False
def _recursive_divide(self, instance, divisor):
if isinstance(instance, dict):
for key, value in instance.items():
instance[key] = self._recursive_divide(value, divisor)
elif isinstance(instance, list):
for i, value in enumerate(instance):
instance[i] = self._recursive_divide(value, divisor)
elif isinstance(instance, float):
instance /= divisor
elif self.strict:
raise ValueError(f"Cannot divide instance of type {type(instance)}")
return instance
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
return self._recursive_divide(instance, self.divisor)
class ArtifactFetcherMixin:
"""Provides a way to fetch and cache artifacts in the system.
Args:
cache (Dict[str, Artifact]): A cache for storing fetched artifacts.
"""
cache: Dict[str, Artifact] = {}
@classmethod
def get_artifact(cls, artifact_identifier: str) -> Artifact:
if artifact_identifier not in cls.cache:
artifact, artifactory = fetch_artifact(artifact_identifier)
cls.cache[artifact_identifier] = artifact
return cls.cache[artifact_identifier]
class ApplyOperatorsField(StreamInstanceOperator):
"""Applies value operators to each instance in a stream based on specified fields.
Args:
operators_field (str): name of the field that contains a single name, or a list of names, of the operators to be applied,
one after the other, for the processing of the instance. Each operator is equipped with 'process_instance()'
method.
default_operators (List[str]): A list of default operators to be used if no operators are found in the instance.
Example:
when instance {"prediction": 111, "references": [222, 333] , "c": ["processors.to_string", "processors.first_character"]}
is processed by operator (please look up the catalog that these operators, they are tuned to process fields "prediction" and
"references"):
operator = ApplyOperatorsField(operators_field="c"),
the resulting instance is: {"prediction": "1", "references": ["2", "3"], "c": ["processors.to_string", "processors.first_character"]}
"""
operators_field: str
default_operators: List[str] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
operator_names = instance.get(self.operators_field)
if operator_names is None:
assert (
self.default_operators is not None
), f"No operators found in field '{self.operators_field}', and no default operators provided."
operator_names = self.default_operators
if isinstance(operator_names, str):
operator_names = [operator_names]
# otherwise , operator_names is already a list
# we now have a list of nanes of operators, each is equipped with process_instance method.
operator = SequentialOperator(steps=operator_names)
return operator.process_instance(instance)
class FilterByCondition(SingleStreamOperator):
"""Filters a stream, yielding only instances for which the required values follows the required condition operator.
Raises an error if a required key is missing.
Args:
values (Dict[str, Any]): Values that instances must match using the condition to be included in the output.
condition: the name of the desired condition operator between the key and the value in values ("gt", "ge", "lt", "le", "ne", "eq")
error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.
Examples:
FilterByCondition(values = {"a":4}, condition = "gt") will yield only instances where "a">4
FilterByCondition(values = {"a":4}, condition = "le") will yield only instances where "a"<=4
FilterByCondition(values = {"a":[4,8]}, condition = "in") will yield only instances where "a" is 4 or 8
FilterByCondition(values = {"a":[4,8]}, condition = "not in") will yield only instances where "a" different from 4 or 8
"""
values: Dict[str, Any]
condition: str
condition_to_func = {
"gt": operator.gt,
"ge": operator.ge,
"lt": operator.lt,
"le": operator.le,
"eq": operator.eq,
"ne": operator.ne,
"in": None, # Handled as special case
"not in": None, # Handled as special case
}
error_on_filtered_all: bool = True
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
yielded = False
for instance in stream:
if self._is_required(instance):
yielded = True
yield instance
if not yielded and self.error_on_filtered_all:
raise RuntimeError(
f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False"
)
def verify(self):
if self.condition not in self.condition_to_func:
raise ValueError(
f"Unsupported condition operator '{self.condition}', supported {list(self.condition_to_func.keys())}"
)
for key, value in self.values.items():
if self.condition in ["in", "not it"] and not isinstance(value, list):
raise ValueError(
f"The filter for key ('{key}') in FilterByCondition with condition '{self.condition}' must be list but is not : '{value}'"
)
return super().verify()
def _is_required(self, instance: dict) -> bool:
for key, value in self.values.items():
if key not in instance:
raise ValueError(
f"Required filter field ('{key}') in FilterByCondition is not found in {instance}"
)
if self.condition == "in":
if instance[key] not in value:
return False
elif self.condition == "not in":
if instance[key] in value:
return False
else:
func = self.condition_to_func[self.condition]
if func is None:
raise ValueError(
f"Function not defined for condition '{self.condition}'"
)
if not func(instance[key], value):
return False
return True
class ComputeExpressionMixin(Artifact):
"""Computes an expression expressed over fields of an instance.
Args:
expression (str): the expression, in terms of names of fields of an instance
imports_list (List[str]): list of names of imports needed for the evaluation of the expression
"""
expression: str
imports_list: List[str] = OptionalField(default_factory=list)
def verify(self):
PackageRequirementsMixin.check_missing_requirements(self, self.imports_list)
def prepare(self):
# can not do the imports here, because object does not pickle with imports
self.globals = {
module_name: __import__(module_name) for module_name in self.imports_list
}
def compute_expression(self, instance: dict) -> Any:
if settings.allow_unverified_code:
return eval(self.expression, self.globals, instance)
raise ValueError(
f"Cannot run expression by {self} when unitxt.settings.allow_unverified_code=False either set it to True or set {settings.allow_unverified_code_key} environment variable."
)
class FilterByExpression(SingleStreamOperator, ComputeExpressionMixin):
"""Filters a stream, yielding only instances which fulfil a condition specified as a string to be python's eval-uated.
Raises an error if a field participating in the specified condition is missing from the instance
Args:
expression (str): a condition over fields of the instance, to be processed by python's eval()
imports_list (List[str]): names of imports needed for the eval of the query (e.g. 're', 'json')
error_on_filtered_all (bool, optional): If True, raises an error if all instances are filtered out. Defaults to True.
Examples:
FilterByExpression(expression = "a > 4") will yield only instances where "a">4
FilterByExpression(expression = "a <= 4 and b > 5") will yield only instances where the value of field "a" is not exceeding 4 and in field "b" -- greater than 5
FilterByExpression(expression = "a in [4, 8]") will yield only instances where "a" is 4 or 8
FilterByExpression(expression = "a not in [4, 8]") will yield only instances where "a" is neither 4 nor 8
"""
error_on_filtered_all: bool = True
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
yielded = False
for instance in stream:
if self.compute_expression(instance):
yielded = True
yield instance
if not yielded and self.error_on_filtered_all:
raise RuntimeError(
f"{self.__class__.__name__} filtered out every instance in stream '{stream_name}'. If this is intended set error_on_filtered_all=False"
)
class ExecuteExpression(StreamInstanceOperator, ComputeExpressionMixin):
"""Compute an expression, specified as a string to be eval-uated, over the instance's fields, and store the result in field to_field.
Raises an error if a field mentioned in the query is missing from the instance.
Args:
expression (str): an expression to be evaluated over the fields of the instance
to_field (str): the field where the result is to be stored into
imports_list (List[str]): names of imports needed for the eval of the query (e.g. 're', 'json')
Examples:
When instance {"a": 2, "b": 3} is process-ed by operator
ExecuteExpression(expression="a+b", to_field = "c")
the result is {"a": 2, "b": 3, "c": 5}
When instance {"a": "hello", "b": "world"} is process-ed by operator
ExecuteExpression(expression = "a+' '+b", to_field = "c")
the result is {"a": "hello", "b": "world", "c": "hello world"}
"""
to_field: str
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance[self.to_field] = self.compute_expression(instance)
return instance
class ExtractMostCommonFieldValues(MultiStreamOperator):
field: str
stream_name: str
overall_top_frequency_percent: Optional[int] = 100
min_frequency_percent: Optional[int] = 0
to_field: str
process_every_value: Optional[bool] = False
"""
Extract the unique values of a field ('field') of a given stream ('stream_name') and store (the most frequent of) them
as a list in a new field ('to_field') in all streams.
More specifically, sort all the unique values encountered in field 'field' by decreasing order of frequency.
When 'overall_top_frequency_percent' is smaller than 100, trim the list from bottom, so that the total frequency of
the remaining values makes 'overall_top_frequency_percent' of the total number of instances in the stream.
When 'min_frequency_percent' is larger than 0, remove from the list any value whose relative frequency makes
less than 'min_frequency_percent' of the total number of instances in the stream.
At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default values.
Examples:
ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes") - extracts all the unique values of
field 'label', sorts them by decreasing frequency, and stores the resulting list in field 'classes' of each and
every instance in all streams.
ExtractMostCommonFieldValues(stream_name="train", field="labels", to_field="classes", process_every_value=True) -
in case that field 'labels' contains a list of values (and not a single value) - track the occurrences of all the possible
value members in these lists, and report the most frequent values.
if process_every_value=False, track the most frequent whole lists, and report those (as a list of lists) in field
'to_field' of each instance of all streams.
ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",overall_top_frequency_percent=80) -
extracts the most frequent possible values of field 'label' that together cover at least 80% of the instances of stream_name,
and stores them in field 'classes' of each instance of all streams.
ExtractMostCommonFieldValues(stream_name="train", field="label", to_field="classes",min_frequency_percent=5) -
extracts all possible values of field 'label' that cover, each, at least 5% of the instances.
Stores these values, sorted by decreasing order of frequency, in field 'classes' of each instance in all streams.
"""
def verify(self):
assert (
self.overall_top_frequency_percent <= 100
and self.overall_top_frequency_percent >= 0
), "'overall_top_frequency_percent' must be between 0 and 100"
assert (
self.min_frequency_percent <= 100 and self.min_frequency_percent >= 0
), "'min_frequency_percent' must be between 0 and 100"
assert not (
self.overall_top_frequency_percent < 100 and self.min_frequency_percent > 0
), "At most one of 'overall_top_frequency_percent' and 'min_frequency_percent' is allowed to move from their default value"
super().verify()
def process(self, multi_stream: MultiStream) -> MultiStream:
stream = multi_stream[self.stream_name]
counter = Counter()
for instance in stream:
if (not isinstance(instance[self.field], list)) and (
self.process_every_value is True
):
raise ValueError(
"'process_every_field' is allowed to change to 'True' only for fields whose contents are lists"
)
if (not isinstance(instance[self.field], list)) or (
self.process_every_value is False
):
# either not a list, or is a list but process_every_value == False : view contetns of 'field' as one entity whose occurrences are counted.
counter.update(
[(*instance[self.field],)]
if isinstance(instance[self.field], list)
else [instance[self.field]]
) # convert to a tuple if list, to enable the use of Counter which would not accept
# a list as an hashable entity to count its occurrences
else:
# content of 'field' is a list and process_every_value == True: add one occurrence on behalf of each individual value
counter.update(instance[self.field])
# here counter counts occurrences of individual values, or tuples.
values_and_counts = counter.most_common()
if self.overall_top_frequency_percent < 100:
top_frequency = (
sum(counter.values()) * self.overall_top_frequency_percent / 100.0
)
sum_counts = 0
for _i, p in enumerate(values_and_counts):
sum_counts += p[1]
if sum_counts >= top_frequency:
break
values_and_counts = counter.most_common(_i + 1)
if self.min_frequency_percent > 0:
min_frequency = self.min_frequency_percent * sum(counter.values()) / 100.0
while values_and_counts[-1][1] < min_frequency:
values_and_counts.pop()
values_to_keep = [
[*ele[0]] if isinstance(ele[0], tuple) else ele[0]
for ele in values_and_counts
]
addmostcommons = AddFields(fields={self.to_field: values_to_keep})
return addmostcommons(multi_stream)
class ExtractFieldValues(ExtractMostCommonFieldValues):
def verify(self):
super().verify()
def prepare(self):
self.overall_top_frequency_percent = 100
self.min_frequency_percent = 0
class Intersect(FieldOperator):
"""Intersects the value of a field, which must be a list, with a given list.
Args:
allowed_values (list) - list to intersect.
"""
allowed_values: List[Any]
def verify(self):
super().verify()
if self.process_every_value:
raise ValueError(
"'process_every_value=True' is not supported in Intersect operator"
)
if not isinstance(self.allowed_values, list):
raise ValueError(
f"The allowed_values is not a list but '{self.allowed_values}'"
)
def process_value(self, value: Any) -> Any:
super().process_value(value)
if not isinstance(value, list):
raise ValueError(f"The value in field is not a list but '{value}'")
return [e for e in value if e in self.allowed_values]
class RemoveValues(FieldOperator):
"""Removes elements in a field, which must be a list, using a given list of unallowed.
Args:
unallowed_values (list) - values to be removed.
"""
unallowed_values: List[Any]
def verify(self):
super().verify()
if not isinstance(self.unallowed_values, list):
raise ValueError(
f"The unallowed_values is not a list but '{self.unallowed_values}'"
)
def process_value(self, value: Any) -> Any:
if not isinstance(value, list):
raise ValueError(f"The value in field is not a list but '{value}'")
return [e for e in value if e not in self.unallowed_values]
class Unique(SingleStreamReducer):
"""Reduces a stream to unique instances based on specified fields.
Args:
fields (List[str]): The fields that should be unique in each instance.
"""
fields: List[str] = field(default_factory=list)
@staticmethod
def to_tuple(instance: dict, fields: List[str]) -> tuple:
result = []
for field_name in fields:
value = instance[field_name]
if isinstance(value, list):
value = tuple(value)
result.append(value)
return tuple(result)
def process(self, stream: Stream) -> Stream:
seen = set()
for instance in stream:
values = self.to_tuple(instance, self.fields)
if values not in seen:
seen.add(values)
return list(seen)
class SplitByValue(MultiStreamOperator):
"""Splits a MultiStream into multiple streams based on unique values in specified fields.
Args:
fields (List[str]): The fields to use when splitting the MultiStream.
"""
fields: List[str] = field(default_factory=list)
def process(self, multi_stream: MultiStream) -> MultiStream:
uniques = Unique(fields=self.fields)(multi_stream)
result = {}
for stream_name, stream in multi_stream.items():
stream_unique_values = uniques[stream_name]
for unique_values in stream_unique_values:
filtering_values = dict(zip(self.fields, unique_values))
filtered_streams = FilterByCondition(
values=filtering_values, condition="eq"
)._process_single_stream(stream)
filtered_stream_name = (
stream_name + "_" + nested_tuple_to_string(unique_values)
)
result[filtered_stream_name] = filtered_streams
return MultiStream(result)
class ApplyStreamOperatorsField(SingleStreamOperator, ArtifactFetcherMixin):
"""Applies stream operators to a stream based on specified fields in each instance.
Args:
field (str): The field containing the operators to be applied.
reversed (bool): Whether to apply the operators in reverse order.
"""
field: str
reversed: bool = False
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
first_instance = stream.peek()
operators = first_instance.get(self.field, [])
if isinstance(operators, str):
operators = [operators]
if self.reversed:
operators = list(reversed(operators))
for operator_name in operators:
operator = self.get_artifact(operator_name)
assert isinstance(
operator, StreamingOperator
), f"Operator {operator_name} must be a SingleStreamOperator"
stream = operator(MultiStream({"tmp": stream}))["tmp"]
yield from stream
class ApplyMetric(SingleStreamOperator, ArtifactFetcherMixin):
"""Applies metric operators to a stream based on a metric field specified in each instance.
Args:
metric_field (str): The field containing the metrics to be applied.
calc_confidence_intervals (bool): Whether the applied metric should calculate confidence intervals or not.
"""
metric_field: str
calc_confidence_intervals: bool
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
from .metrics import Metric
first_instance = stream.peek()
metric_names = first_instance.get(self.metric_field, [])
if not metric_names:
raise RuntimeError(
f"Missing metric names in field '{self.metric_field}' and instance '{first_instance}'."
)
if isinstance(metric_names, str):
metric_names = [metric_names]
# Each metric operator computes its score and then sets the main score, overwriting
# the previous main score value (if any). So, we need to reverse the order of the listed metrics.
# This will cause the first listed metric to run last, and the main score will be set
# by the first listed metric (as desired).
metric_names = list(reversed(metric_names))
# Workaround: The metric/MetricPipeline modifies the stream itself, sometimes making it incompatible
# for further metrics' processing, instead of just modifying the score field.
# Here we keep all the fields besides the score, and restore them after the metric finishes.
first_instance = stream.peek()
keys_to_restore = set(first_instance.keys()).difference({"score"})
multi_stream = MultiStream({"tmp": stream})
multi_stream = CopyFields(
field_to_field={k: f"{k}_orig" for k in keys_to_restore}
)(multi_stream)
for metric_name in metric_names:
metric = self.get_artifact(metric_name)
assert isinstance(
metric, Metric
), f"Operator {metric_name} must be a Metric"
if not self.calc_confidence_intervals:
metric.disable_confidence_interval_calculation()
multi_stream = metric(multi_stream)
multi_stream = CopyFields(
field_to_field={f"{k}_orig": k for k in keys_to_restore}
)(multi_stream)
multi_stream = RemoveFields(fields=[f"{k}_orig" for k in keys_to_restore])(
multi_stream
)
stream = multi_stream["tmp"]
yield from stream
class MergeStreams(MultiStreamOperator):
"""Merges multiple streams into a single stream.
Args:
new_stream_name (str): The name of the new stream resulting from the merge.
add_origin_stream_name (bool): Whether to add the origin stream name to each instance.
origin_stream_name_field_name (str): The field name for the origin stream name.
"""
streams_to_merge: List[str] = None
new_stream_name: str = "all"
add_origin_stream_name: bool = True
origin_stream_name_field_name: str = "origin"
def merge(self, multi_stream):
for stream_name, stream in multi_stream.items():
if self.streams_to_merge is None or stream_name in self.streams_to_merge:
for instance in stream:
if self.add_origin_stream_name:
instance[self.origin_stream_name_field_name] = stream_name
yield instance
def process(self, multi_stream: MultiStream) -> MultiStream:
return MultiStream(
{
self.new_stream_name: Stream(
self.merge, gen_kwargs={"multi_stream": multi_stream}
)
}
)
class Shuffle(PagedStreamOperator):
"""Shuffles the order of instances in each page of a stream.
Args (of superclass):
page_size (int): The size of each page in the stream. Defaults to 1000.
"""
random_generator: Random = None
def before_process_multi_stream(self):
super().before_process_multi_stream()
self.random_generator = new_random_generator(sub_seed="shuffle")
def process(self, page: List[Dict], stream_name: Optional[str] = None) -> Generator:
self.random_generator.shuffle(page)
yield from page
class EncodeLabels(StreamInstanceOperator):
"""Encode each value encountered in any field in 'fields' into the integers 0,1,...
Encoding is determined by a str->int map that is built on the go, as different values are
first encountered in the stream, either as list members or as values in single-value fields.
Args:
fields (List[str]): The fields to encode together.
Example: applying
EncodeLabels(fields = ["a", "b/*"])
on input stream = [{"a": "red", "b": ["red", "blue"], "c":"bread"},
{"a": "blue", "b": ["green"], "c":"water"}] will yield the
output stream = [{'a': 0, 'b': [0, 1], 'c': 'bread'}, {'a': 1, 'b': [2], 'c': 'water'}]
Note: qpath is applied here, and hence, fields that are lists, should be included in
input 'fields' with the appendix "/*" as in the above example.
"""
fields: List[str]
def _process_multi_stream(self, multi_stream: MultiStream) -> MultiStream:
self.encoder = {}
return super()._process_multi_stream(multi_stream)
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
for field_name in self.fields:
values = dict_get(instance, field_name, use_dpath=True)
values_was_a_list = isinstance(values, list)
if not isinstance(values, list):
values = [values]
for value in values:
if value not in self.encoder:
self.encoder[value] = len(self.encoder)
new_values = [self.encoder[value] for value in values]
if not values_was_a_list:
new_values = new_values[0]
dict_set(
instance,
field_name,
new_values,
use_dpath=True,
set_multiple="*" in field_name,
)
return instance
class StreamRefiner(SingleStreamOperator):
"""Discard from the input stream all instances beyond the leading 'max_instances' instances.
Thereby, if the input stream consists of no more than 'max_instances' instances, the resulting stream is the whole of the
input stream. And if the input stream consists of more than 'max_instances' instances, the resulting stream only consists
of the leading 'max_instances' of the input stream.
Args: max_instances (int)
apply_to_streams (optional, list(str)): names of streams to refine.
Examples:
when input = [{"a": 1},{"a": 2},{"a": 3},{"a": 4},{"a": 5},{"a": 6}] is fed into
StreamRefiner(max_instances=4)
the resulting stream is [{"a": 1},{"a": 2},{"a": 3},{"a": 4}]
"""
max_instances: int = None
apply_to_streams: Optional[List[str]] = None
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
if self.max_instances is not None:
yield from stream.take(self.max_instances)
else:
yield from stream
class DeterministicBalancer(StreamRefiner):
"""A class used to balance streams deterministically.
For each instance, a signature is constructed from the values of the instance in specified input 'fields'.
By discarding instances from the input stream, DeterministicBalancer maintains equal number of instances for all signatures.
When also input 'max_instances' is specified, DeterministicBalancer maintains a total instance count not exceeding
'max_instances'. The total number of discarded instances is as few as possible.
Attributes:
fields (List[str]): A list of field names to be used in producing the instance's signature.
max_instances (Optional, int)
Usage:
balancer = DeterministicBalancer(fields=["field1", "field2"], max_instances=200)
balanced_stream = balancer.process(stream)
Example:
When input [{"a": 1, "b": 1},{"a": 1, "b": 2},{"a": 2},{"a": 3},{"a": 4}] is fed into
DeterministicBalancer(fields=["a"])
the resulting stream will be: [{"a": 1, "b": 1},{"a": 2},{"a": 3},{"a": 4}]
"""
fields: List[str]
def signature(self, instance):
return str(
tuple(dict_get(instance, field, use_dpath=True) for field in self.fields)
)
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
counter = collections.Counter()
for instance in stream:
counter[self.signature(instance)] += 1
if len(counter) == 0:
return
lowest_count = counter.most_common()[-1][-1]
max_total_instances_per_sign = lowest_count
if self.max_instances is not None:
max_total_instances_per_sign = min(
lowest_count, self.max_instances // len(counter)
)
counter = collections.Counter()
for instance in stream:
sign = self.signature(instance)
if counter[sign] < max_total_instances_per_sign:
counter[sign] += 1
yield instance
class LengthBalancer(DeterministicBalancer):
"""Balances by a signature that reflects the total length of the fields' values, quantized into integer segments.
Args:
segments_boundaries (List[int]): distinct integers sorted in increasing order, that maps a given total length
into the index of the least of them that exceeds the total length. (If none exceeds -- into one index
beyond, namely, the length of segments_boudaries)
fields (Optional, List[str])
Example:
when input [{"a": [1, 3], "b": 0, "id": 0}, {"a": [1, 3], "b": 0, "id": 1}, {"a": [], "b": "a", "id": 2}] is fed into
.. code-block::
LengthBalancer(fields=["a"], segments_boundaries=[1])
input instances will be counted and balanced against two categories: empty total length (less than 1), and non-empty.
"""
segments_boundaries: List[int]
fields: Optional[List[str]]
def signature(self, instance):
total_len = 0
for field_name in self.fields:
total_len += len(dict_get(instance, field_name, use_dpath=True))
for i, val in enumerate(self.segments_boundaries):
if total_len < val:
return i
return i + 1
class DownloadError(Exception):
def __init__(
self,
message,
):
self.__super__(message)
class UnexpectedHttpCodeError(Exception):
def __init__(self, http_code):
self.__super__(f"unexpected http code {http_code}")
class DownloadOperator(SideEffectOperator):
"""Operator for downloading a file from a given URL to a specified local path.
Attributes:
source (str): URL of the file to be downloaded.
target (str): Local path where the downloaded file should be saved.
"""
source: str
target: str
def process(self):
try:
response = requests.get(self.source, allow_redirects=True)
except Exception as e:
raise DownloadError(f"Unabled to download {self.source}") from e
if response.status_code != 200:
raise UnexpectedHttpCodeError(response.status_code)
with open(self.target, "wb") as f:
f.write(response.content)
class ExtractZipFile(SideEffectOperator):
"""Operator for extracting files from a zip archive.
Attributes:
zip_file (str): Path of the zip file to be extracted.
target_dir (str): Directory where the contents of the zip file will be extracted.
"""
zip_file: str
target_dir: str
def process(self):
with zipfile.ZipFile(self.zip_file) as zf:
zf.extractall(self.target_dir)
class DuplicateInstances(SingleStreamOperator):
"""Operator which duplicates each instance in stream a given number of times.
Attributes:
num_duplications (int): How many times each instance should be duplicated (1 means no duplication).
duplication_index_field (Optional[str]):
If given, then additional field with specified name is added to each duplicated instance,
which contains id of a given duplication. Defaults to None, so no field is added.
"""
num_duplications: int
duplication_index_field: Optional[str] = None
def process(self, stream: Stream, stream_name: Optional[str] = None) -> Generator:
for instance in stream:
for idx in range(self.num_duplications):
duplicate = deepcopy(instance)
if self.duplication_index_field:
duplicate.update({self.duplication_index_field: idx})
yield duplicate
def verify(self):
if not isinstance(self.num_duplications, int) or self.num_duplications < 1:
raise ValueError(
f"num_duplications must be an integer equal to or greater than 1. "
f"Got: {self.num_duplications}."
)
if self.duplication_index_field is not None and not isinstance(
self.duplication_index_field, str
):
raise ValueError(
f"If given, duplication_index_field must be a string. "
f"Got: {self.duplication_index_field}"
)
|