File size: 5,711 Bytes
ee71e67 8ff6144 ee71e67 8ff6144 ee71e67 8ff6144 ee71e67 2109a58 ee71e67 2109a58 ee71e67 2109a58 ee71e67 2109a58 ee71e67 7e5d152 ee71e67 7e5d152 ee71e67 2109a58 ee71e67 1247c04 8ff6144 ee71e67 2109a58 8ff6144 ee71e67 2109a58 ee71e67 1247c04 ee71e67 2109a58 ee71e67 2109a58 ee71e67 2109a58 ee71e67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
from typing import (
Any,
Dict,
List,
Optional,
)
from .operator import StreamInstanceOperator
from .type_utils import isoftype
class Format(StreamInstanceOperator):
pass
class SystemFormat(Format):
r"""Generates the whole input to the model, from constant strings that are given as args, and from values found in specified fields of the instance.
SystemFormat expects the input instance to contain:
1. A field named "system_prompt" whose value is a string (potentially empty) that delivers a task independent opening text.
2. A field named "source" whose value is a string verbalizing the original values in the instance (as read
from the source dataset), in the context of the underlying task.
3. A field named "instruction" that contains a (non-None) string.
4. A field named with the value in arg 'demos_field', containing a list of dicts, each dict with fields "source"
and "target", representing a single demo.
5. A field named "target_prefx" that contains a string to prefix the target in both each demo, and to end the whole generated prompt
SystemFormat formats the above fields into a single string to be inputted to the model. This string overwrites
field "source" of the instance. Formatting is driven by two args: 'demo_format' and 'model_input_format'.
SystemFormat also pops fields "system_prompt", "instruction", "target_prefix", and the field containing the demos out from the input instance.
Args:
demos_field (str): the name of the field that contains the demos, being a list of dicts, each with "source" and "target" keys
demo_format (str): formatting string for a single demo, combining fields "source" and "target"
model_input_format (str) overall product format, combining instruction and source (as read from fields "instruction"
and "source" of the input instance), together with demos (as formatted into one string)
Example:
when input instance:
.. code-block::
{
"source": "1+1",
"target": "2",
"instruction": "Solve the math exercises.",
"demos": [{"source": "1+2", "target": "3"}, {"source": "4-2", "target": "2"}]
}
is processed by
.. code-block::
system_format = SystemFormat(
demos_field="demos",
demo_format="Input: {source}\nOutput: {target}\n\n",
model_input_format="Instruction: {instruction}\n\n{demos}Input: {source}\nOutput: ",
)
the resulting instance is:
.. code-block::
{
"target": "2",
"source": "Instruction: Solve the math exercises.\n\nInput: 1+2\nOutput: 3\n\nInput: 4-2\nOutput: 2\n\nInput: 1+1\nOutput: ",
}
"""
demos_field: str = "demos"
demo_format: str = "{source}\n{target_prefix}{target}\n\n" # example: "User: {source}\nAgent: {target}\n\n"
model_input_format: str = (
"{system_prompt}{instruction}{demos}{source}\n{target_prefix}"
)
@staticmethod
def _retrieve_field_and_assert_not_none(instance, field_name) -> str:
if field_name is not None and field_name in instance:
field_value = instance[field_name]
assert (
field_value is not None
), f"Value in field '{field_name}' should not be none. Received instance: {instance}"
return field_value
return ""
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
assert (
"source" in instance
), f"field 'source' is expected to be in the input instance. Received instance: {instance}"
source = self._retrieve_field_and_assert_not_none(
instance=instance, field_name="source"
)
instruction = self._retrieve_field_and_assert_not_none(
instance=instance, field_name="instruction"
)
target_prefix = self._retrieve_field_and_assert_not_none(
instance=instance, field_name="target_prefix"
)
system_prompt = self._retrieve_field_and_assert_not_none(
instance=instance, field_name="system_prompt"
)
# pop "system_prompt", "instruction", and "target_prefix" from instance
if "target_prefix" in instance:
instance.pop("target_prefix")
if "instruction" in instance:
instance.pop("instruction")
if "system_prompt" in instance:
instance.pop("system_prompt")
demo_instances = []
if self.demos_field is not None and self.demos_field in instance:
demos = instance[self.demos_field]
assert (
demos is not None and isoftype(demos, List[Dict[str, Any]])
), f"A list of dict-s is expected in field '{self.demos_field}'. Received instance: {instance}"
demo_instances = demos
# pop demos from instance
instance.pop(self.demos_field)
demos_string = ""
for demo_instance in demo_instances:
demo_str = self.demo_format.format(
target_prefix=target_prefix,
source=demo_instance["source"],
target=demo_instance["target"],
)
demos_string += demo_str
output = self.model_input_format.format(
system_prompt=system_prompt,
instruction=instruction,
demos=demos_string,
source=source,
target_prefix=target_prefix,
)
instance["source"] = output
return instance
|