File size: 20,067 Bytes
0db93dd 9b14558 2038164 0db93dd d423f18 0db93dd 902ea7b 0db93dd d423f18 cc0572c d423f18 cc0572c d423f18 0db93dd d524551 d423f18 0db93dd d423f18 902ea7b 11723f3 902ea7b d423f18 11723f3 d423f18 d524551 d423f18 11723f3 d423f18 0db93dd d423f18 11723f3 d423f18 0db93dd d423f18 11723f3 d423f18 0db93dd 043ae31 0db93dd 043ae31 0db93dd cc0572c 0db93dd 11723f3 0db93dd cc0572c 11723f3 0db93dd cc0572c 11723f3 0db93dd 11723f3 0db93dd 11723f3 0db93dd 043ae31 11723f3 043ae31 11723f3 0db93dd 043ae31 0db93dd 11723f3 cc0572c 11723f3 cc0572c 11723f3 cc0572c 11723f3 cc0572c 0db93dd 2038164 043ae31 902ea7b 2038164 902ea7b 2038164 902ea7b 2038164 902ea7b 2038164 902ea7b 2038164 902ea7b 2038164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import uuid
from abc import ABC, abstractmethod
from collections import Counter
from dataclasses import field
from typing import Any, Dict, Generator, List, Optional
import evaluate
import numpy
from .dataclass import InternalField
from .operator import (
MultiStreamOperator,
SingleStreamOperator,
StreamingOperator,
StreamInstanceOperator,
)
from .operators import CopyFields
from .stream import MultiStream, Stream
def abstract_factory():
return {}
def abstract_field():
return field(default_factory=abstract_factory)
class UpdateStream(StreamInstanceOperator):
update: dict
def process(self, instance: Dict[str, Any], stream_name: str = None) -> Dict[str, Any]:
instance.update(self.update)
return instance
# TODO: currently we have two classes with this name. metric.Metric and matrics.Metric...
class Metric(ABC):
@property
@abstractmethod
def main_score(self):
pass
class GlobalMetric(SingleStreamOperator, Metric):
def process(self, stream: Stream, stream_name: str = None) -> Generator:
references = []
predictions = []
global_score = {}
instances = []
for instance in stream:
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
refs, pred = instance["references"], instance["prediction"]
try:
instance_score = self._compute([refs], [pred])
except:
instance_score = {"score": None, "score_name": self.main_score}
if isinstance(self.main_score, str) and self.main_score is not None:
instance_score[self.main_score] = None
instance["score"]["instance"].update(instance_score)
references.append(refs)
predictions.append(pred)
instances.append(instance)
result = self._compute(references, predictions)
global_score.update(result)
for instance in instances:
instance["score"]["global"] = global_score
yield instance
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.compute(references, predictions)
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
@abstractmethod
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
pass
class InstanceMetric(SingleStreamOperator, Metric):
implemented_reductions: List[str] = field(default_factory=lambda: ["mean"])
@property
@abstractmethod
def reduction_map(self) -> dict:
pass
def process(self, stream: Stream, stream_name: str = None) -> Generator:
global_score = {}
instances = []
for instance in stream:
refs, pred = instance["references"], instance["prediction"]
instance_score = self._compute(refs, pred)
if "score" not in instance:
instance["score"] = {"global": global_score, "instance": {}}
else:
global_score = instance["score"]["global"]
instance["score"]["instance"].update(instance_score)
instances.append(instance)
for reduction, fields in self.reduction_map.items():
assert (
reduction in self.implemented_reductions
), f"Reduction {reduction} is not implemented, use one of {self.implemented_reductions}"
if reduction == "mean":
from statistics import mean
for field in fields:
global_score[field] = mean([instance["score"]["instance"][field] for instance in instances])
if field == self.main_score:
global_score["score"] = global_score[field]
global_score["score_name"] = self.main_score
for instance in instances:
yield instance
def _compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.compute(references=references, predictions=predictions)
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
@abstractmethod
def compute(self, references: List[str], prediction: str) -> dict:
pass
class Squad(GlobalMetric):
_metric = None
main_score = "f1"
metric = "squad"
def prepare(self):
super(Squad, self).prepare()
self._metric = evaluate.load(self.metric)
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
ids = [str(uuid.uuid4()).replace("-", "") for _ in range(len(predictions))]
formatted_predictions = [
{"prediction_text": prediction, "id": ids[i]} for i, prediction in enumerate(predictions)
]
formatted_references = [
{"answers": {"answer_start": [-1], "text": reference}, "id": ids[i]}
for i, reference in enumerate(references)
]
return self._metric.compute(predictions=formatted_predictions, references=formatted_references)
class SingleReferenceInstanceMetric(InstanceMetric):
def _compute(self, references: List[str], prediction: str) -> dict:
result = self.compute(references[0], prediction)
result["score"] = result[self.main_score]
result["score_name"] = self.main_score
return result
@abstractmethod
def compute(self, reference, prediction: str) -> dict:
pass
class Accuracy(SingleReferenceInstanceMetric):
reduction_map = {"mean": ["accuracy"]}
main_score = "accuracy"
def compute(self, reference, prediction: str) -> dict:
return {"accuracy": float(str(reference) == str(prediction))}
class MetricPipeline(MultiStreamOperator, Metric):
main_score: str = None
preprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
postpreprocess_steps: Optional[List[StreamingOperator]] = field(default_factory=list)
metric: Metric = None
def verify(self):
assert self.main_score is not None, "main_score is not set"
def prepare(self):
super().prepare()
self.prepare_score = CopyFields(
field_to_field=[
[f"score/instance/{self.main_score}", "score/instance/score"],
[f"score/global/{self.main_score}", "score/global/score"],
],
use_query=True,
)
def process(self, multi_stream: MultiStream) -> MultiStream:
for step in self.preprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.metric(multi_stream)
for step in self.postpreprocess_steps:
multi_stream = step(multi_stream)
multi_stream = self.prepare_score(multi_stream)
return multi_stream
class HuggingfaceMetric(GlobalMetric):
metric_name: str = None
main_score: str = None
scale: float = 1.0
hf_compute_args: dict = {}
def prepare(self):
super().prepare()
self.metric = evaluate.load(self.metric_name)
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
result = self.metric.compute(predictions=predictions, references=references, **self.hf_compute_args)
if self.scale != 1.0:
for key in result:
if isinstance(result[key], float):
result[key] /= self.scale
return result
class F1(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
metric = "f1"
def prepare(self):
super(F1, self).prepare()
self._metric = evaluate.load(self.metric)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return self.str_to_id[str]
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only a single reference per prediction is allowed in F1 metric"
self.str_to_id = {}
self.id_to_str = {}
formatted_references = [self.get_str_id(reference[0]) for reference in references]
unique_labels = self.str_to_id.keys()
formatted_predictions = [self.get_str_id(prediction) for prediction in predictions]
labels = list(set(formatted_references))
result = self._metric.compute(
predictions=formatted_predictions, references=formatted_references, labels=labels, average=self.average
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + self.id_to_str[label]] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1Micro(F1):
main_score = "f1_micro"
average = "micro"
class F1Macro(F1):
main_score = "f1_macro"
class F1MultiLabel(GlobalMetric):
_metric = None
main_score = "f1_macro"
average = None # Report per class then aggregate by mean
classes_to_ignore = ["none"]
def prepare(self):
super(F1MultiLabel, self).prepare()
self._metric = evaluate.load("f1", "multilabel")
def add_str_to_id(self, str):
if not str in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
self.id_to_str[id] = str
return
def get_one_hot_vector(self, labels: List[str]):
result = [0] * len(self.str_to_id)
for label in labels:
if label in self.str_to_id:
result[self.str_to_id[label]] = 1
return result
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
self.str_to_id = {}
self.id_to_str = {}
assert all(
len(reference) == 1 for reference in references
), "Only a single reference per prediction is allowed in F1 metric"
references = [reference[0] for reference in references]
labels = [
l
for l in set([label for reference in references for label in reference])
if l not in self.classes_to_ignore
]
# if no classes are left then F1 is not defined
# (e.g. only "none" in references)
if len(labels) == 0:
return {self.main_score: float("nan")}
for label in labels:
self.add_str_to_id(label)
formatted_references = [self.get_one_hot_vector(reference) for reference in references]
formatted_predictions = [self.get_one_hot_vector(prediction) for prediction in predictions]
# There is odd behavior in scikit-learn that when passing a one-hot vector with a single
# element, it is treated a class identifier. Therefore, we add labels=[1] to limit to only
# to this class.
if len(labels) == 1:
labels_param = [1]
else:
labels_param = None
result = self._metric.compute(
predictions=formatted_predictions,
references=formatted_references,
average=self.average,
labels=labels_param,
)
if isinstance(result["f1"], numpy.ndarray):
from statistics import mean
assert len(result["f1"]) == len(
labels
), f'F1 result ({result["f1"]}) has more entries than labels ({labels})'
final_result = {self.main_score: mean(result["f1"])}
for i, label in enumerate(labels):
final_result["f1_" + label] = result["f1"][i]
else:
final_result = {self.main_score: result["f1"]}
return final_result
class F1MicroMultiLabel(F1MultiLabel):
main_score = "f1_micro"
average = "micro"
class F1MacroMultiLabel(F1MultiLabel):
main_score = "f1_macro"
average = None
class Rouge(HuggingfaceMetric):
metric_name = "rouge"
main_score = "rougeL"
scale = 1.0
use_aggregator: bool = True
rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
sent_split_newline: bool = True
def prepare(self):
self.hf_compute_args = {"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
super().prepare()
import nltk
nltk.download("punkt")
self.sent_tokenize = nltk.sent_tokenize
def compute(self, references, predictions):
if self.sent_split_newline:
predictions = ["\n".join(self.sent_tokenize(prediction.strip())) for prediction in predictions]
references = [["\n".join(self.sent_tokenize(r.strip())) for r in reference] for reference in references]
return super().compute(references, predictions)
# Computes chat edit distance, ignoring whitespace
class CharEditDistanceAccuracy(SingleReferenceInstanceMetric):
reduction_map = {"mean": ["char_edit_dist_accuracy"]}
main_score = "char_edit_dist_accuracy"
def prepare(self):
import editdistance
self.eval = editdistance.eval
def compute(self, reference, prediction: str) -> dict:
formatted_prediction = "".join(prediction.split())
formatted_reference = "".join(reference.split())
max_length = max(len(formatted_reference), len(formatted_prediction))
if max_length == 0:
return 0
edit_dist = self.eval(formatted_reference, formatted_prediction)
return {"char_edit_dist_accuracy": (1 - edit_dist / max_length)}
class Wer(HuggingfaceMetric):
metric_name = "wer"
main_score = "wer"
def prepare(self):
super().prepare()
self.metric = evaluate.load(self.metric_name)
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
assert all(
len(reference) == 1 for reference in references
), "Only single reference per prediction is allowed in wer metric"
formatted_references = [reference[0] for reference in references]
result = self.metric.compute(predictions=predictions, references=formatted_references)
return {self.main_score: result}
class Bleu(HuggingfaceMetric):
metric_name = "bleu"
main_score = "bleu"
scale = 1.0
class SacreBleu(HuggingfaceMetric):
metric_name = "sacrebleu"
main_score = "score"
scale = 1.0
class MatthewsCorrelation(HuggingfaceMetric):
metric_name = "matthews_correlation"
main_score = "matthews_correlation"
str_to_id: dict = InternalField(default_factory=dict)
def get_str_id(self, str):
if str not in self.str_to_id:
id = len(self.str_to_id)
self.str_to_id[str] = id
return self.str_to_id[str]
def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
formatted_references = [self.get_str_id(reference[0]) for reference in references]
formatted_predictions = [self.get_str_id(prediction) for prediction in predictions]
result = self.metric.compute(predictions=formatted_predictions, references=formatted_references)
return result
class CustomF1(GlobalMetric):
main_score = "f1_micro"
classes = None
@abstractmethod
def get_element_group(self, element):
pass
@abstractmethod
def get_element_representation(self, element):
pass
def group_elements(self, l):
return {
k: Counter([self.get_element_representation(value) for value in l if self.get_element_group(value) == k])
for k in set([self.get_element_group(e) for e in l])
}
def calculate_groups_ratio(self, actual_group, total_group):
return sum([min(actual_group[k], total_group[k]) for k in actual_group.keys()]), sum(actual_group.values())
def f1(self, pn, pd, rn, rd):
precision = 1.0 if pn == 0 and pd == 0 else pn / pd
recall = 1.0 if rn == 0 and rd == 0 else rn / rd
try:
return 2 * precision * recall / (precision + recall)
except ZeroDivisionError:
return 0.0
def compute(self, references: List[Any], predictions: List[Any]) -> dict:
# in case reference are List[List[List[Any]]] and predictions are List[List[Any]]:
if isinstance(references[0], list) and isinstance(references[0][0], list):
references = [element[0] for element in references]
assert len(references) == len(predictions), (
f"references size ({len(references)})" f" doesn't mach predictions sise ({len(references)})."
)
if self.classes is None:
classes = set([self.get_element_group(e) for sublist in references for e in sublist])
else:
classes = self.classes
groups_statistics = dict()
for references_batch, predictions_batch in zip(references, predictions):
grouped_references = self.group_elements(references_batch)
grouped_predictions = self.group_elements(predictions_batch)
all_groups = set(grouped_references.keys()).union(grouped_predictions.keys())
for group in all_groups:
if group not in groups_statistics:
groups_statistics[group] = {
"precision_numerator": 0,
"precision_denominator": 0,
"recall_numerator": 0,
"recall_denominator": 0,
}
references_by_group = grouped_references.get(group, Counter([]))
predictions_by_group = grouped_predictions.get(group, Counter([]))
pn, pd = self.calculate_groups_ratio(
actual_group=predictions_by_group, total_group=references_by_group
)
rn, rd = self.calculate_groups_ratio(
actual_group=references_by_group, total_group=predictions_by_group
)
groups_statistics[group]["precision_numerator"] += pn
groups_statistics[group]["precision_denominator"] += pd
groups_statistics[group]["recall_numerator"] += rn
groups_statistics[group]["recall_denominator"] += rd
result = {}
num_of_unknown_class_predictions = 0
pn_total = pd_total = rn_total = rd_total = 0
for group in groups_statistics.keys():
pn, pd, rn, rd = (
groups_statistics[group]["precision_numerator"],
groups_statistics[group]["precision_denominator"],
groups_statistics[group]["recall_numerator"],
groups_statistics[group]["recall_denominator"],
)
pn_total, pd_total, rn_total, rd_total = pn_total + pn, pd_total + pd, rn_total + rn, rd_total + rd
if group in classes:
result[f"f1_{group}"] = self.f1(pn, pd, rn, rd)
else:
num_of_unknown_class_predictions += pd
try:
result["f1_macro"] = sum(result.values()) / len(result.keys())
except ZeroDivisionError:
result["f1_macro"] = 1.0
amount_of_predictions = pd_total
if amount_of_predictions == 0:
result["in_classes_support"] = 1.0
else:
result["in_classes_support"] = 1.0 - num_of_unknown_class_predictions / amount_of_predictions
result[f"f1_micro"] = self.f1(pn_total, pd_total, rn_total, rd_total)
return result
class NER(CustomF1):
def get_element_group(self, element):
return element[1]
def get_element_representation(self, element):
return str(element)
|