File size: 15,093 Bytes
c6e9c8c 8320ba9 1e05e68 2c69fb8 a024d9a c6e9c8c 2c69fb8 cd9d84b c6e9c8c 1e05e68 c6e9c8c eee0bf8 c6e9c8c e6be0c8 cd9d84b 1e05e68 8320ba9 c6e9c8c eee0bf8 5bbb99c eee0bf8 5bbb99c c6e9c8c 5bbb99c cd9d84b c6e9c8c eee0bf8 c6e9c8c 1e05e68 5bbb99c a024d9a 5bbb99c 1e05e68 eee0bf8 1e05e68 eee0bf8 1e05e68 eee0bf8 1e05e68 eee0bf8 1e05e68 5bbb99c 67f4e71 2c69fb8 67f4e71 2c69fb8 67f4e71 2c69fb8 67f4e71 8320ba9 2c69fb8 0a1b314 2c69fb8 0a1b314 2c69fb8 0a1b314 2c69fb8 0a1b314 2c69fb8 0a1b314 2c69fb8 0a1b314 2c69fb8 c6e9c8c 2c69fb8 b462f85 2c69fb8 b462f85 2c69fb8 b462f85 2c69fb8 59be457 2c69fb8 a024d9a 2c69fb8 eee0bf8 2c69fb8 c6e9c8c 2c69fb8 c6e9c8c eee0bf8 2c69fb8 eee0bf8 0a1b314 2c69fb8 eee0bf8 c6e9c8c cd9d84b c6e9c8c a350a45 1e05e68 c6e9c8c 1e05e68 c6e9c8c 67f4e71 5bbb99c 2c69fb8 1e05e68 2c69fb8 1e05e68 2c69fb8 eee0bf8 2c69fb8 eee0bf8 8320ba9 c6e9c8c 2c69fb8 c6e9c8c 8320ba9 c6e9c8c e6be0c8 5bbb99c e6be0c8 eee0bf8 e6be0c8 eee0bf8 cd9d84b eee0bf8 cd9d84b eee0bf8 e6be0c8 5bbb99c 1e05e68 eee0bf8 5bbb99c cd9d84b eee0bf8 1e05e68 8320ba9 5bbb99c cd9d84b 5bbb99c eee0bf8 5bbb99c cd9d84b 5bbb99c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
from typing import List
from .card import TaskCard
from .dataclass import Field, InternalField, NonPositionalField, OptionalField
from .formats import Format, SystemFormat
from .logging_utils import get_logger
from .operator import SequentialOperator, SourceSequentialOperator, StreamingOperator
from .operators import AddFields, Augmentor, NullAugmentor, StreamRefiner
from .recipe import Recipe
from .schema import ToUnitxtGroup
from .splitters import Sampler, SeparateSplit, SpreadSplit
from .stream import MultiStream
from .system_prompts import EmptySystemPrompt, SystemPrompt
from .templates import Template
logger = get_logger()
# Used to give meaningful name to recipe steps
class CreateDemosPool(SeparateSplit):
pass
class AddDemosField(SpreadSplit):
pass
class BaseRecipe(Recipe, SourceSequentialOperator):
card: TaskCard
template: Template = None
system_prompt: SystemPrompt = Field(default_factory=EmptySystemPrompt)
format: Format = Field(default_factory=SystemFormat)
metrics: List[str] = NonPositionalField(default=None)
postprocessors: List[str] = NonPositionalField(default=None)
loader_limit: int = None
max_train_instances: int = None
max_validation_instances: int = None
max_test_instances: int = None
train_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
validation_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
test_refiner: StreamRefiner = OptionalField(default_factory=StreamRefiner)
demos_pool_size: int = None
num_demos: int = 0
demos_removed_from_data: bool = True
demos_pool_name: str = "demos_pool"
demos_taken_from: str = "train"
demos_field: str = "demos"
sampler: Sampler = None
augmentor: Augmentor = OptionalField(default_factory=NullAugmentor)
steps: List[StreamingOperator] = InternalField(default_factory=list)
def before_process_multi_stream(self):
super().before_process_multi_stream()
if self.sampler: # e.g. when num_demos is 0, the sampler may not be initialized
self.sampler.init_new_random_generator()
def verify(self):
super().verify()
if self.num_demos > 0:
if self.demos_pool_size is None or self.demos_pool_size < 1:
raise ValueError(
"When using demonstrations both num_demos and demos_pool_size should be assigned with positive integers."
)
if self.demos_pool_size < self.num_demos:
raise ValueError(
f"num_demos (got: {self.num_demos}) should not exceed demos_pool_size (got: {self.demos_pool_size})"
)
if self.loader_limit and self.demos_pool_size > self.loader_limit:
raise ValueError(
f"demos_pool_size should not exceed loader_limit ({self.loader_limit}), Got demos_pool_size={self.demos_pool_size}"
)
if self.loader_limit:
if self.max_test_instances and self.max_test_instances > self.loader_limit:
raise ValueError(
f"max_test_instances should not exceed loader_limit ({self.loader_limit}), Got max_test_instances={self.max_test_instances}"
)
if (
self.max_validation_instances
and self.max_validation_instances > self.loader_limit
):
raise ValueError(
f"max_validation_instances should not exceed loader_limit ({self.loader_limit}), Got max_validation_instances={self.max_validation_instances}"
)
if (
self.max_train_instances
and self.max_train_instances > self.loader_limit
):
raise ValueError(
f"max_train_instances should not exceed loader_limit ({self.loader_limit}), Got max_train_instances={self.max_train_instances}"
)
def prepare_refiners(self):
self.train_refiner.max_instances = self.max_train_instances
self.train_refiner.apply_to_streams = ["train"]
self.processing.steps.append(self.train_refiner)
self.validation_refiner.max_instances = self.max_validation_instances
self.validation_refiner.apply_to_streams = ["validation"]
self.processing.steps.append(self.validation_refiner)
self.test_refiner.max_instances = self.max_test_instances
self.test_refiner.apply_to_streams = ["test"]
self.processing.steps.append(self.test_refiner)
def prepare_metrics_and_postprocessors(self):
if self.postprocessors is None:
postprocessors = self.template.get_postprocessors()
else:
postprocessors = self.postprocessors
if self.metrics is None:
metrics = self.card.task.metrics
else:
metrics = self.metrics
return metrics, postprocessors
def set_pipelines(self):
self.loading = SequentialOperator()
self.loading.__description__ = "Loading the data from the data source."
self.metadata = SequentialOperator()
self.metadata.__description__ = (
"Adding metadata (e.g. format, system prompt, template) "
)
self.standardization = SequentialOperator()
self.standardization.__description__ = (
"Standardizing the raw dataset fields to task field definition."
)
self.processing = SequentialOperator()
self.processing.__description__ = (
"Setting task fields (and selecting demos per sample if needed)."
)
self.verblization = SequentialOperator()
self.verblization.__description__ = "Verbalizing the input to the model and gold references to the 'source', 'target' and 'references' fields."
self.finalize = SequentialOperator()
self.finalize.__description__ = "Adding post processors. Removing intermediate fields. Creating the final output dataset."
self.steps = [
self.loading,
self.metadata,
self.standardization,
self.processing,
self.metadata,
self.verblization,
self.finalize,
]
self.inference_instance = SequentialOperator()
self.inference_instance.steps = [
self.metadata,
self.processing,
self.metadata,
]
self.inference_demos = SourceSequentialOperator()
self.inference_demos.steps = [
self.loading,
self.metadata,
self.standardization,
self.processing,
self.metadata,
]
self.inference = SequentialOperator()
self.inference.steps = [self.verblization, self.finalize]
self._demos_pool_cache = None
def production_preprocess(self, task_instances):
ms = MultiStream.from_iterables({"__inference__": task_instances})
return list(self.inference_instance(ms)["__inference__"])
def production_demos_pool(self):
if self.num_demos > 0:
if self._demos_pool_cache is None:
self._demos_pool_cache = list(
self.inference_demos()[self.demos_pool_name]
)
return self._demos_pool_cache
return []
def produce(self, task_instances):
"""Use the recipe in production to produce model ready query from standard task instance."""
self.before_process_multi_stream()
multi_stream = MultiStream.from_iterables(
{
"__inference__": self.production_preprocess(task_instances),
self.demos_pool_name: self.production_demos_pool(),
}
)
multi_stream = self.inference(multi_stream)
return list(multi_stream["__inference__"])
def prepare(self):
# To avoid the Python's mutable default list trap, we set the default value to None
# and then set it to an empty list if it is None.
if self.card.preprocess_steps is None:
self.card.preprocess_steps = []
self.set_pipelines()
loader = self.card.loader
if self.loader_limit:
loader.loader_limit = self.loader_limit
logger.info(f"Loader line limit was set to {self.loader_limit}")
self.loading.steps.append(loader)
# This is required in case loader_limit is not enforced by the loader
if self.loader_limit:
self.loading.steps.append(StreamRefiner(max_instances=self.loader_limit))
self.metadata.steps.append(
AddFields(
fields={
"recipe_metadata": {
"template": self.template,
"system_prompt": self.system_prompt,
"format": self.format,
}
}
)
)
self.standardization.steps.extend(self.card.preprocess_steps)
self.processing.steps.append(self.card.task)
if self.augmentor.augment_task_input:
self.augmentor.set_task_input_fields(self.card.task.augmentable_inputs)
self.processing.steps.append(self.augmentor)
if self.demos_pool_size is not None and self.demos_pool_size > 0:
self.processing.steps.append(
CreateDemosPool(
from_split=self.demos_taken_from,
to_split_names=[self.demos_pool_name, self.demos_taken_from],
to_split_sizes=[int(self.demos_pool_size)],
remove_targets_from_source_split=self.demos_removed_from_data,
)
)
if self.num_demos > 0:
if self.sampler is None:
if self.card.sampler is None:
raise ValueError(
"Unexpected None value for card.sampler. "
"To use num_demos > 0, please set a sampler on the TaskCard."
)
self.sampler = self.card.sampler
self.sampler.set_size(self.num_demos)
self.prepare_refiners()
self.verblization.steps.append(self.template)
if self.num_demos > 0:
self.verblization.steps.append(
AddDemosField(
source_stream=self.demos_pool_name,
target_field=self.demos_field,
sampler=self.sampler,
)
)
self.verblization.steps.append(self.system_prompt)
self.verblization.steps.append(self.format)
if self.augmentor.augment_model_input:
self.verblization.steps.append(self.augmentor)
metrics, postprocessors = self.prepare_metrics_and_postprocessors()
self.finalize.steps.append(
ToUnitxtGroup(
group="unitxt",
metrics=metrics,
postprocessors=postprocessors,
)
)
class StandardRecipeWithIndexes(BaseRecipe):
template_card_index: int = None
def prepare(self):
assert (
self.template_card_index is None or self.template is None
), f"Specify either template ({self.template}) or template_card_index ({self.template_card_index}) but not both"
assert not (
self.template_card_index is None and self.template is None
), "Specify either template or template_card_index in card"
if self.template_card_index is not None:
try:
self.template = self.card.templates[self.template_card_index]
except Exception as e:
if isinstance(self.card.templates, dict):
options = list(self.card.templates.keys())
else:
options = list(range(0, len(self.card.templates)))
raise ValueError(
f"card_template_index '{self.template_card_index}' is not defined in card. Possible card_template_index options: {options}"
) from e
super().prepare()
class StandardRecipe(StandardRecipeWithIndexes):
"""This class represents a standard recipe for data processing and preparation.
This class can be used to prepare a recipe.
with all necessary steps, refiners and renderers included. It allows to set various
parameters and steps in a sequential manner for preparing the recipe.
Attributes:
card (TaskCard): TaskCard object associated with the recipe.
template (Template, optional): Template object to be used for the recipe.
system_prompt (SystemPrompt, optional): SystemPrompt object to be used for the recipe.
loader_limit (int, optional): Specifies the maximum number of instances per stream to be returned from the loader (used to reduce loading time in large datasets)
format (SystemFormat, optional): SystemFormat object to be used for the recipe.
metrics (List[str]): list of catalog metrics to use with this recipe.
postprocessors (List[str]): list of catalog processors to apply at post processing. (Not recommended to use from here)
train_refiner (StreamRefiner, optional): Train refiner to be used in the recipe.
max_train_instances (int, optional): Maximum training instances for the refiner.
validation_refiner (StreamRefiner, optional): Validation refiner to be used in the recipe.
max_validation_instances (int, optional): Maximum validation instances for the refiner.
test_refiner (StreamRefiner, optional): Test refiner to be used in the recipe.
max_test_instances (int, optional): Maximum test instances for the refiner.
demos_pool_size (int, optional): Size of the demos pool.
num_demos (int, optional): Number of demos to be used.
demos_pool_name (str, optional): Name of the demos pool. Default is "demos_pool".
demos_taken_from (str, optional): Specifies from where the demos are taken. Default is "train".
demos_field (str, optional): Field name for demos. Default is "demos".
demos_removed_from_data (bool, optional): whether to remove the demos from the source data, Default is True
sampler (Sampler, optional): Sampler object to be used in the recipe.
steps (List[StreamingOperator], optional): List of StreamingOperator objects to be used in the recipe.
augmentor (Augmentor) : Augmentor to be used to pseudo randomly augment the source text
instruction_card_index (int, optional): Index of instruction card to be used
for preparing the recipe.
template_card_index (int, optional): Index of template card to be used for
preparing the recipe.
Methods:
prepare(): This overridden method is used for preparing the recipe
by arranging all the steps, refiners, and renderers in a sequential manner.
Raises:
AssertionError: If both template and template_card_index are specified at the same time.
"""
pass
|