File size: 10,528 Bytes
2252418
 
 
ec8f857
2252418
 
ec8f857
2252418
 
 
 
 
 
ec8f857
2252418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
971c779
 
 
 
2252418
 
 
 
 
 
 
 
 
 
 
 
971c779
 
 
 
2252418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8f857
 
 
 
d56e2db
ec8f857
 
 
 
 
 
 
 
 
 
 
2252418
 
 
 
ec8f857
 
 
 
2252418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8f857
2252418
 
 
 
 
 
 
 
 
 
 
 
 
15095b2
2252418
15095b2
 
 
 
 
 
 
 
 
 
 
 
2252418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8f857
 
 
2252418
 
 
 
 
ec8f857
 
 
 
 
 
2252418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8f857
 
 
2252418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os

import gradio as gr
import librosa
import spaces
import torch
from e2_tts_pytorch import DurationPredictor
from huggingface_hub import snapshot_download
from omegaconf import OmegaConf
from tokenizers import Tokenizer
from transformers import PreTrainedTokenizerFast

from ipa.ipa import get_ipa, parse_ipa
from patch.e2_tts_pytorch import E2TTSPatched as E2TTS


def load_model(model_id):
    model_dir = snapshot_download(model_id)

    e2tts_ckpt_path = os.path.join(model_dir, "e2tts.pt")
    duration_predictor_ckpt_path = os.path.join(model_dir, "duration_predictor.pt")
    tokenizer_file_path = os.path.join(model_dir, "tokenizer.json")

    duration_predictor_ckpt = torch.load(duration_predictor_ckpt_path)
    e2tts_ckpt = torch.load(e2tts_ckpt_path)

    tokenizer_object = Tokenizer.from_file(tokenizer_file_path)
    fast_tokenizer_object = PreTrainedTokenizerFast(tokenizer_object=tokenizer_object)

    def tokenizer(text):
        ids = fast_tokenizer_object(text, return_tensors="pt", padding=True).input_ids
        ids[ids == 0] = -1
        return ids

    duration_predictor = DurationPredictor(
        transformer=dict(
            dim=384,
            depth=8,
            heads=6,
            attn_kwargs=dict(
                gate_value_heads=True,
                flash = True,
            ),
        ),
        text_num_embeds=fast_tokenizer_object.vocab_size,
        tokenizer=tokenizer,
    )
    duration_predictor.load_state_dict(duration_predictor_ckpt["model_state_dict"])

    e2tts = E2TTS(
        cond_drop_prob=0.2,
        transformer=dict(
            dim=512,
            depth=12,
            heads=6,
            attn_kwargs=dict(
                gate_value_heads=True,
                flash = True,
            ),
        ),
        text_num_embeds=fast_tokenizer_object.vocab_size,
        tokenizer=tokenizer,
    )
    e2tts.load_state_dict(e2tts_ckpt["model_state_dict"])

    duration_predictor.eval()
    e2tts.eval()

    e2tts.duration_predictor = duration_predictor

    return e2tts


OmegaConf.register_new_resolver("load_model", load_model)

models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))


@spaces.GPU
def _do_tts(model_id, ipa, ref_wav, ref_transcript, speed):
    with torch.inference_mode():
        model = models_config[model_id]["model"].cuda()
        ref_wav = librosa.load(ref_wav, sr=model.sampling_rate)[0]
        ipa = ipa + " <sil>"
        print(ref_transcript + ipa)
        text = model.tokenizer([ref_transcript + ipa]).to(model.device)

        generated = model.sample(
            cond=torch.from_numpy(ref_wav).float().unsqueeze(0).cuda(),
            text=text,
            steps=32,
            cfg_strength=1.0,
            speed=speed,
        )[0]
        return generated.cpu().numpy()


def text_to_speech(
    model_id: str,
    use_default_or_custom: str,
    speaker_name: str,
    dialect: str,
    speed: float,
    text: str,
    ref_wav: str,
    ref_transcript: str,
):
    if len(text) == 0:
        raise gr.Error("請勿輸入空字串。")
    words, ipa, pinyin, missing_words = get_ipa(text, dialect=dialect)
    if len(missing_words) > 0:
        raise gr.Error(
            f"句子中的[{','.join(missing_words)}]目前無法轉成 ipa。請嘗試其他句子。"
        )
    parsed_ipa = parse_ipa(ipa)
    if dialect == "nansixian":
        dialect = "sixian"

    wav = _do_tts(
        model_id,
        parsed_ipa,
        ref_wav,
        ref_transcript,
        speed,
    )

    return (
        words,
        pinyin,
        (
            models_config[model_id]["model"].sampling_rate,
            wav,
        ),
    )


def when_model_selected(model_id):
    model = models_config[model_id]

    return (
        gr.update(
            choices=[speaker_name for speaker_name in model["speaker_mapping"].keys()],
            value=list(model["speaker_mapping"].keys())[0],
        ),
        gr.update(
            choices=[(k, v) for k, v in model["dialect_mapping"].items()],
            value=list(model["dialect_mapping"].values())[0],
        ),
        gr.update(
            value="預設語者",
        ),
    )


def when_default_speaker_selected(model_id, speaker_name):
    speaker_mapping = models_config[model_id]["speaker_mapping"]
    ref_wav_path = speaker_mapping[speaker_name]["ref_wav"]
    ref_transcript = speaker_mapping[speaker_name]["ref_transcript"]

    return gr.update(
        value=ref_wav_path,
    ), gr.update(
        value=ref_transcript,
    )


def use_default_or_custom_radio_input(use_default_or_custom):
    if use_default_or_custom == "客製化語者":
        return gr.update(visible=True), gr.update(visible=False)
    return gr.update(visible=False), gr.update(visible=True)


demo = gr.Blocks(
    title="臺灣客語語音生成系統",
    css="@import url(https://tauhu.tw/tauhu-oo.css);",
    theme=gr.themes.Default(
        font=(
            "tauhu-oo",
            gr.themes.GoogleFont("Source Sans Pro"),
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
        )
    ),
)

with demo:
    default_model_id = list(models_config.keys())[0]
    model_drop_down = gr.Dropdown(
        models_config.keys(),
        value=default_model_id,
        label="模型",
    )
    use_default_or_custom_radio = gr.Radio(
        label="語者類型",
        choices=["預設語者", "客製化語者"],
        value="預設語者",
        visible=True,
        show_label=False,
        interactive=False,  # TODO
    )

    ref_wav = gr.Audio(
        visible=False,
        type="filepath",
        value=list(models_config[default_model_id]["speaker_mapping"].values())[0][
            "ref_wav"
        ],
        waveform_options=gr.WaveformOptions(
            show_controls=False,
            sample_rate=24000,
        ),
    )
    ref_transcript = gr.Textbox(
        value=list(models_config[default_model_id]["speaker_mapping"].values())[0][
            "ref_transcript"
        ],
        visible=False,
    )

    speaker_wav = gr.Audio(
        label="客製化語音",
        visible=False,
        editable=False,
        type="filepath",
        waveform_options=gr.WaveformOptions(
            show_controls=False,
            sample_rate=24000,
        ),
    )
    speaker_drop_down = gr.Dropdown(
        choices=[
            speaker_name
            for speaker_name in models_config[default_model_id][
                "speaker_mapping"
            ].keys()
        ],
        value=list(models_config[default_model_id]["speaker_mapping"].keys())[0],
        label="語者",
        interactive=True,
        visible=True,
    )
    speaker_drop_down.change(
        when_default_speaker_selected,
        inputs=[model_drop_down, speaker_drop_down],
        outputs=[ref_wav, ref_transcript],
    )

    use_default_or_custom_radio.change(
        use_default_or_custom_radio_input,
        inputs=[use_default_or_custom_radio],
        outputs=[speaker_wav, speaker_drop_down],
    )

    dialect_radio = gr.Radio(
        choices=[
            (k, v)
            for k, v in models_config[default_model_id]["dialect_mapping"].items()
        ],
        value=list(models_config[default_model_id]["dialect_mapping"].values())[0],
        label="腔調",
        interactive=len(models_config[default_model_id]["dialect_mapping"]) > 1,
    )

    model_drop_down.input(
        when_model_selected,
        inputs=[model_drop_down],
        outputs=[speaker_drop_down, dialect_radio, use_default_or_custom_radio],
    )

    input_text = gr.Textbox(
        label="輸入文字",
        value="",
    )

    speed = gr.Slider(maximum=1.5, minimum=0.5, value=1, label="語速(越大越慢)")

    gr.Markdown(
        """
        # 臺灣客語語音合成系統
        ### Taiwanese Hakka Text-to-Speech System
        ### 研發團隊
        - **[李鴻欣 Hung-Shin Lee](mailto:hungshinlee@gmail.com)([聯和科創](https://www.104.com.tw/company/1a2x6bmu75))**
        - **[陳力瑋 Li-Wei Chen](mailto:wayne900619@gmail.com)([聯和科創](https://www.104.com.tw/company/1a2x6bmu75))**
        ### 合作單位
        - **[國立聯合大學智慧客家實驗室](https://www.gohakka.org)**
        """
    )
    gr.Interface(
        text_to_speech,
        inputs=[
            model_drop_down,
            use_default_or_custom_radio,
            speaker_drop_down,
            dialect_radio,
            speed,
            input_text,
            ref_wav,
            ref_transcript,
        ],
        outputs=[
            gr.Textbox(interactive=False, label="斷詞"),
            gr.Textbox(interactive=False, label="客語拼音"),
            gr.Audio(interactive=False, label="合成語音", show_download_button=True),
        ],
        allow_flagging="auto",
    )
    gr.Examples(
        [
            [
                "預設語者",
                "XF",
                "sixian",
                "食飯愛正經食,正毋會食到半出半入",
            ],
            [
                "預設語者",
                "XF",
                "sixian",
                "歸條路吊等長長个花燈,祈求風調雨順,歸屋下人个心願,親像花燈下燒暖个光華",
            ],
            # [
            #     "預設語者",
            #     "戴君儒",
            #     "hailu",
            #     "男女平等个時代,平平做得受教育",
            # ],
            # [
            #     "預設語者",
            #     "宋涵葳",
            #     "dapu",
            #     "客家山城乜跈緊鬧熱䟘來咧",
            # ],
            # [
            #     "預設語者",
            #     "江芮敏",
            #     "raoping",
            #     "頭擺匱人,戴个毋係菅草屋,个創商品哦",
            # ],
            # [
            #     "預設語者",
            #     "洪藝晅",
            #     "zhaoan",
            #     "歇熱个時務,阿松歸屋下轉去在客莊个老屋",
            # ],
            # [
            #     "預設語者",
            #     "江芮敏",
            #     "nansixian",
            #     "在𠊎讀小學一年生个時節,阿爸輒常用自轉車載𠊎去學校讀書",
            # ],
        ],
        label="範例",
        inputs=[
            use_default_or_custom_radio,
            speaker_drop_down,
            dialect_radio,
            input_text,
        ],
    )

demo.launch()