File size: 5,726 Bytes
bc3753a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import librosa
import librosa.filters
import numpy as np
from scipy import signal
from wav2mel_hparams import hparams as hp
from librosa.core.audio import resample
import soundfile as sf

def load_wav(path, sr):
    return librosa.core.load(path, sr=sr)

def preemphasis(wav, k, preemphasize=True):
    if preemphasize:
        return signal.lfilter([1, -k], [1], wav)
    return wav

def inv_preemphasis(wav, k, inv_preemphasize=True):
    if inv_preemphasize:
        return signal.lfilter([1], [1, -k], wav)
    return wav

def get_hop_size():
    hop_size = hp.hop_size
    if hop_size is None:
        assert hp.frame_shift_ms is not None
        hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
    return hop_size

def linearspectrogram(wav):
    D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
    S = _amp_to_db(np.abs(D)) - hp.ref_level_db
    
    if hp.signal_normalization:
        return _normalize(S)
    return S

def melspectrogram(wav):
    D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
    S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
    
    if hp.signal_normalization:
        return _normalize(S)
    return S

def _stft(y):
    return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)

##########################################################
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
def num_frames(length, fsize, fshift):
    """Compute number of time frames of spectrogram
    """
    pad = (fsize - fshift)
    if length % fshift == 0:
        M = (length + pad * 2 - fsize) // fshift + 1
    else:
        M = (length + pad * 2 - fsize) // fshift + 2
    return M


def pad_lr(x, fsize, fshift):
    """Compute left and right padding
    """
    M = num_frames(len(x), fsize, fshift)
    pad = (fsize - fshift)
    T = len(x) + 2 * pad
    r = (M - 1) * fshift + fsize - T
    return pad, pad + r
##########################################################
#Librosa correct padding
def librosa_pad_lr(x, fsize, fshift):
    return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]

# Conversions
_mel_basis = None

def _linear_to_mel(spectogram):
    global _mel_basis
    if _mel_basis is None:
        _mel_basis = _build_mel_basis()
    return np.dot(_mel_basis, spectogram)

def _build_mel_basis():
    assert hp.fmax <= hp.sample_rate // 2
    return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
                               fmin=hp.fmin, fmax=hp.fmax)

def _amp_to_db(x):
    min_level = np.exp(hp.min_level_db / 20 * np.log(10))
    return 20 * np.log10(np.maximum(min_level, x))

def _db_to_amp(x):
    return np.power(10.0, (x) * 0.05)

def _normalize(S):
    if hp.allow_clipping_in_normalization:
        if hp.symmetric_mels:
            return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
                           -hp.max_abs_value, hp.max_abs_value)
        else:
            return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
    
    assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
    if hp.symmetric_mels:
        return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
    else:
        return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))

def _denormalize(D):
    if hp.allow_clipping_in_normalization:
        if hp.symmetric_mels:
            return (((np.clip(D, -hp.max_abs_value,
                              hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
                    + hp.min_level_db)
        else:
            return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
    
    if hp.symmetric_mels:
        return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
    else:
        return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)



def wav2mel(wav, sr):
        wav16k = resample(wav, orig_sr=sr, target_sr=16000)
        # print('wav16k', wav16k.shape, wav16k.dtype)
        mel = melspectrogram(wav16k)
        # print('mel', mel.shape, mel.dtype)
        if np.isnan(mel.reshape(-1)).sum() > 0:
            raise ValueError(
                'Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
        # mel.dtype = np.float32
        mel_chunks = []
        mel_idx_multiplier = 80. / 25
        mel_step_size = 8
        i = start_idx = 0
        while start_idx < len(mel[0]):
            start_idx = int(i * mel_idx_multiplier)
            if start_idx + mel_step_size // 2 > len(mel[0]):
                mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
            elif start_idx - mel_step_size // 2 < 0:
                mel_chunks.append(mel[:, :mel_step_size])
            else:
                mel_chunks.append(mel[:, start_idx - mel_step_size // 2 : start_idx + mel_step_size // 2])
            i += 1
        return mel_chunks



if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--wav', type=str, default='')
    parser.add_argument('--save_feats', action='store_true')

    opt = parser.parse_args()

    wav, sr = librosa.core.load(opt.wav)
    mel_chunks = np.array(wav2mel(wav.T, sr))
    print(mel_chunks.shape, mel_chunks.transpose(0,2,1).shape)
    
    if opt.save_feats:
        save_path = opt.wav.replace('.wav', '_mel.npy')
        np.save(save_path, mel_chunks.transpose(0,2,1))
        print(f"[INFO] saved logits to {save_path}")