File size: 32,532 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
"""
Automated Model Monitoring and Performance Tracking
Comprehensive system for monitoring deployed models, detecting drift, and performance degradation
"""
import json
import sqlite3
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, asdict
from collections import deque
import os
import logging
import hashlib
from scipy import stats
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import warnings
warnings.filterwarnings('ignore')
@dataclass
class ModelMetrics:
"""Model performance metrics at a point in time"""
model_id: str
timestamp: str
accuracy: float
precision: float
recall: float
f1_score: float
auc_roc: float
prediction_latency_ms: float
throughput_rps: float
error_rate: float
custom_metrics: Dict[str, float]
@dataclass
class DataDriftMetric:
"""Data drift measurement"""
feature_name: str
drift_score: float
drift_method: str
threshold: float
is_drifting: bool
timestamp: str
@dataclass
class ModelAlert:
"""Alert for model performance issues"""
alert_id: str
model_id: str
alert_type: str # drift, performance, error
severity: str # low, medium, high, critical
message: str
timestamp: str
acknowledged: bool
resolved: bool
@dataclass
class PerformanceBaseline:
"""Performance baseline for comparison"""
model_id: str
metric_name: str
baseline_value: float
threshold_lower: float
threshold_upper: float
created_at: str
class ModelMonitor:
"""Comprehensive model monitoring system"""
def __init__(self, db_path: str = None):
self.db_path = db_path or "/home/o1/Desktop/cyber_llm/data/mlops/model_monitor.db"
self.logger = logging.getLogger(__name__)
self.alert_queue = deque(maxlen=1000)
self._setup_database()
def _setup_database(self):
"""Initialize monitoring database"""
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
with sqlite3.connect(self.db_path) as conn:
conn.execute('PRAGMA journal_mode=WAL')
# Model metadata table
conn.execute('''
CREATE TABLE IF NOT EXISTS models (
model_id TEXT PRIMARY KEY,
model_name TEXT,
model_version TEXT,
model_type TEXT,
deployed_at TEXT,
status TEXT,
metadata TEXT
)
''')
# Performance metrics table
conn.execute('''
CREATE TABLE IF NOT EXISTS model_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT,
timestamp TEXT,
accuracy REAL,
precision_score REAL,
recall_score REAL,
f1_score REAL,
auc_roc REAL,
prediction_latency_ms REAL,
throughput_rps REAL,
error_rate REAL,
custom_metrics TEXT,
FOREIGN KEY (model_id) REFERENCES models (model_id)
)
''')
# Data drift table
conn.execute('''
CREATE TABLE IF NOT EXISTS data_drift (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT,
feature_name TEXT,
drift_score REAL,
drift_method TEXT,
threshold_value REAL,
is_drifting INTEGER,
timestamp TEXT,
FOREIGN KEY (model_id) REFERENCES models (model_id)
)
''')
# Model alerts table
conn.execute('''
CREATE TABLE IF NOT EXISTS model_alerts (
alert_id TEXT PRIMARY KEY,
model_id TEXT,
alert_type TEXT,
severity TEXT,
message TEXT,
timestamp TEXT,
acknowledged INTEGER DEFAULT 0,
resolved INTEGER DEFAULT 0,
FOREIGN KEY (model_id) REFERENCES models (model_id)
)
''')
# Performance baselines table
conn.execute('''
CREATE TABLE IF NOT EXISTS performance_baselines (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT,
metric_name TEXT,
baseline_value REAL,
threshold_lower REAL,
threshold_upper REAL,
created_at TEXT,
FOREIGN KEY (model_id) REFERENCES models (model_id)
)
''')
# Prediction logs table (sample for analysis)
conn.execute('''
CREATE TABLE IF NOT EXISTS prediction_logs (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT,
timestamp TEXT,
input_hash TEXT,
prediction TEXT,
confidence REAL,
actual_label TEXT,
is_correct INTEGER,
latency_ms REAL,
FOREIGN KEY (model_id) REFERENCES models (model_id)
)
''')
# Create indices
indices = [
'CREATE INDEX IF NOT EXISTS idx_model_metrics_model_id ON model_metrics(model_id)',
'CREATE INDEX IF NOT EXISTS idx_model_metrics_timestamp ON model_metrics(timestamp)',
'CREATE INDEX IF NOT EXISTS idx_data_drift_model_id ON data_drift(model_id)',
'CREATE INDEX IF NOT EXISTS idx_data_drift_timestamp ON data_drift(timestamp)',
'CREATE INDEX IF NOT EXISTS idx_alerts_model_id ON model_alerts(model_id)',
'CREATE INDEX IF NOT EXISTS idx_alerts_timestamp ON model_alerts(timestamp)',
'CREATE INDEX IF NOT EXISTS idx_prediction_logs_model_id ON prediction_logs(model_id)',
'CREATE INDEX IF NOT EXISTS idx_prediction_logs_timestamp ON prediction_logs(timestamp)'
]
for index_sql in indices:
conn.execute(index_sql)
conn.commit()
def register_model(self, model_id: str, model_name: str, model_version: str,
model_type: str, metadata: Dict[str, Any] = None) -> None:
"""Register a new model for monitoring"""
metadata = metadata or {}
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
INSERT OR REPLACE INTO models
(model_id, model_name, model_version, model_type, deployed_at, status, metadata)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', (
model_id,
model_name,
model_version,
model_type,
datetime.now().isoformat(),
'active',
json.dumps(metadata)
))
conn.commit()
self.logger.info(f"Registered model for monitoring: {model_id}")
def log_metrics(self, model_id: str, metrics: ModelMetrics) -> None:
"""Log performance metrics for a model"""
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
INSERT INTO model_metrics
(model_id, timestamp, accuracy, precision_score, recall_score, f1_score,
auc_roc, prediction_latency_ms, throughput_rps, error_rate, custom_metrics)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
model_id,
metrics.timestamp,
metrics.accuracy,
metrics.precision,
metrics.recall,
metrics.f1_score,
metrics.auc_roc,
metrics.prediction_latency_ms,
metrics.throughput_rps,
metrics.error_rate,
json.dumps(metrics.custom_metrics)
))
conn.commit()
# Check for performance alerts
self._check_performance_alerts(model_id, metrics)
def log_prediction(self, model_id: str, input_data: Any, prediction: Any,
confidence: float, actual_label: Any = None,
latency_ms: float = None) -> None:
"""Log individual prediction for analysis"""
# Create hash of input for privacy/efficiency
input_hash = hashlib.sha256(str(input_data).encode()).hexdigest()
is_correct = None
if actual_label is not None:
is_correct = int(prediction == actual_label)
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
INSERT INTO prediction_logs
(model_id, timestamp, input_hash, prediction, confidence,
actual_label, is_correct, latency_ms)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
''', (
model_id,
datetime.now().isoformat(),
input_hash,
str(prediction),
confidence,
str(actual_label) if actual_label is not None else None,
is_correct,
latency_ms
))
conn.commit()
def detect_data_drift(self, model_id: str, feature_data: Dict[str, np.ndarray],
baseline_data: Dict[str, np.ndarray] = None,
method: str = 'ks_test', threshold: float = 0.05) -> List[DataDriftMetric]:
"""Detect data drift in model features"""
drift_metrics = []
# If no baseline provided, use recent historical data
if baseline_data is None:
baseline_data = self._get_baseline_feature_data(model_id)
for feature_name, current_data in feature_data.items():
if feature_name not in baseline_data:
continue
baseline_feature_data = baseline_data[feature_name]
# Calculate drift score based on method
if method == 'ks_test':
# Kolmogorov-Smirnov test
statistic, p_value = stats.ks_2samp(baseline_feature_data, current_data)
drift_score = p_value
is_drifting = p_value < threshold
elif method == 'chi2_test':
# Chi-square test for categorical features
try:
# Create histograms for comparison
bins = min(len(np.unique(baseline_feature_data)), len(np.unique(current_data)), 10)
baseline_hist, bin_edges = np.histogram(baseline_feature_data, bins=bins)
current_hist, _ = np.histogram(current_data, bins=bin_edges)
# Avoid zero frequencies
baseline_hist = baseline_hist + 1
current_hist = current_hist + 1
statistic, p_value = stats.chisquare(current_hist, baseline_hist)
drift_score = p_value
is_drifting = p_value < threshold
except:
drift_score = 1.0
is_drifting = False
elif method == 'psi':
# Population Stability Index
drift_score = self._calculate_psi(baseline_feature_data, current_data)
is_drifting = drift_score > threshold
else:
# Default to statistical distance
drift_score = abs(np.mean(current_data) - np.mean(baseline_feature_data))
is_drifting = drift_score > threshold
drift_metric = DataDriftMetric(
feature_name=feature_name,
drift_score=drift_score,
drift_method=method,
threshold=threshold,
is_drifting=is_drifting,
timestamp=datetime.now().isoformat()
)
drift_metrics.append(drift_metric)
# Store in database
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
INSERT INTO data_drift
(model_id, feature_name, drift_score, drift_method, threshold_value, is_drifting, timestamp)
VALUES (?, ?, ?, ?, ?, ?, ?)
''', (
model_id,
feature_name,
drift_score,
method,
threshold,
int(is_drifting),
drift_metric.timestamp
))
conn.commit()
# Create alert if significant drift detected
if is_drifting:
self._create_alert(
model_id,
'drift',
'medium',
f"Data drift detected in feature '{feature_name}' (score: {drift_score:.4f})"
)
return drift_metrics
def _calculate_psi(self, baseline: np.ndarray, current: np.ndarray, buckets: int = 10) -> float:
"""Calculate Population Stability Index"""
try:
# Create bins based on baseline data
bin_edges = np.linspace(baseline.min(), baseline.max(), buckets + 1)
# Calculate distributions
baseline_hist, _ = np.histogram(baseline, bins=bin_edges)
current_hist, _ = np.histogram(current, bins=bin_edges)
# Convert to proportions
baseline_prop = baseline_hist / len(baseline) + 1e-10 # Avoid division by zero
current_prop = current_hist / len(current) + 1e-10
# Calculate PSI
psi = np.sum((current_prop - baseline_prop) * np.log(current_prop / baseline_prop))
return psi
except:
return 0.0
def _get_baseline_feature_data(self, model_id: str, days_back: int = 30) -> Dict[str, np.ndarray]:
"""Get baseline feature data from historical predictions"""
# This would typically pull from a feature store or logged data
# For now, return dummy baseline data
return {
'feature_1': np.random.normal(0, 1, 1000),
'feature_2': np.random.normal(5, 2, 1000),
'feature_3': np.random.exponential(2, 1000)
}
def set_performance_baseline(self, model_id: str, metric_name: str,
baseline_value: float, tolerance: float = 0.1) -> None:
"""Set performance baseline for monitoring"""
threshold_lower = baseline_value * (1 - tolerance)
threshold_upper = baseline_value * (1 + tolerance)
baseline = PerformanceBaseline(
model_id=model_id,
metric_name=metric_name,
baseline_value=baseline_value,
threshold_lower=threshold_lower,
threshold_upper=threshold_upper,
created_at=datetime.now().isoformat()
)
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
INSERT INTO performance_baselines
(model_id, metric_name, baseline_value, threshold_lower, threshold_upper, created_at)
VALUES (?, ?, ?, ?, ?, ?)
''', (
baseline.model_id,
baseline.metric_name,
baseline.baseline_value,
baseline.threshold_lower,
baseline.threshold_upper,
baseline.created_at
))
conn.commit()
def _check_performance_alerts(self, model_id: str, metrics: ModelMetrics) -> None:
"""Check if performance metrics trigger alerts"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute('''
SELECT metric_name, baseline_value, threshold_lower, threshold_upper
FROM performance_baselines
WHERE model_id = ?
''', (model_id,))
baselines = cursor.fetchall()
for metric_name, baseline_value, threshold_lower, threshold_upper in baselines:
current_value = getattr(metrics, metric_name.replace('_score', ''), None)
if current_value is None:
current_value = metrics.custom_metrics.get(metric_name, baseline_value)
if current_value < threshold_lower:
severity = 'high' if current_value < baseline_value * 0.8 else 'medium'
self._create_alert(
model_id,
'performance',
severity,
f"Performance degradation: {metric_name} dropped to {current_value:.4f} (baseline: {baseline_value:.4f})"
)
elif current_value > threshold_upper and metric_name in ['error_rate']:
severity = 'high' if current_value > baseline_value * 1.5 else 'medium'
self._create_alert(
model_id,
'performance',
severity,
f"Performance degradation: {metric_name} increased to {current_value:.4f} (baseline: {baseline_value:.4f})"
)
def _create_alert(self, model_id: str, alert_type: str, severity: str, message: str) -> str:
"""Create a new alert"""
alert_id = f"alert_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
alert = ModelAlert(
alert_id=alert_id,
model_id=model_id,
alert_type=alert_type,
severity=severity,
message=message,
timestamp=datetime.now().isoformat(),
acknowledged=False,
resolved=False
)
# Store in database
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
INSERT INTO model_alerts
(alert_id, model_id, alert_type, severity, message, timestamp, acknowledged, resolved)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
''', (
alert.alert_id,
alert.model_id,
alert.alert_type,
alert.severity,
alert.message,
alert.timestamp,
int(alert.acknowledged),
int(alert.resolved)
))
conn.commit()
# Add to alert queue
self.alert_queue.append(alert)
self.logger.warning(f"Alert created: {alert_type} - {severity} - {message}")
return alert_id
def get_model_health_report(self, model_id: str, days: int = 7) -> Dict[str, Any]:
"""Generate comprehensive model health report"""
end_time = datetime.now()
start_time = end_time - timedelta(days=days)
report = {
"model_id": model_id,
"report_period": f"{start_time.isoformat()} to {end_time.isoformat()}",
"generated_at": end_time.isoformat(),
"health_score": 0.0,
"performance_metrics": {},
"drift_analysis": {},
"alerts_summary": {},
"recommendations": []
}
with sqlite3.connect(self.db_path) as conn:
# Get recent performance metrics
cursor = conn.execute('''
SELECT accuracy, precision_score, recall_score, f1_score,
prediction_latency_ms, throughput_rps, error_rate
FROM model_metrics
WHERE model_id = ? AND timestamp >= ?
ORDER BY timestamp DESC
LIMIT 100
''', (model_id, start_time.isoformat()))
metrics_data = cursor.fetchall()
if metrics_data:
metrics_df = pd.DataFrame(metrics_data, columns=[
'accuracy', 'precision', 'recall', 'f1_score',
'latency_ms', 'throughput_rps', 'error_rate'
])
# Calculate average performance
report["performance_metrics"] = {
"avg_accuracy": float(metrics_df['accuracy'].mean()),
"avg_precision": float(metrics_df['precision'].mean()),
"avg_recall": float(metrics_df['recall'].mean()),
"avg_f1_score": float(metrics_df['f1_score'].mean()),
"avg_latency_ms": float(metrics_df['latency_ms'].mean()),
"avg_throughput_rps": float(metrics_df['throughput_rps'].mean()),
"avg_error_rate": float(metrics_df['error_rate'].mean()),
"performance_trend": "stable" # Could implement trend analysis
}
# Get drift information
cursor = conn.execute('''
SELECT feature_name, drift_score, is_drifting
FROM data_drift
WHERE model_id = ? AND timestamp >= ?
ORDER BY timestamp DESC
''', (model_id, start_time.isoformat()))
drift_data = cursor.fetchall()
if drift_data:
total_features = len(set(row[0] for row in drift_data))
drifting_features = len(set(row[0] for row in drift_data if row[2]))
report["drift_analysis"] = {
"total_features_monitored": total_features,
"features_with_drift": drifting_features,
"drift_percentage": (drifting_features / total_features * 100) if total_features > 0 else 0,
"max_drift_score": max(row[1] for row in drift_data) if drift_data else 0
}
# Get alerts summary
cursor = conn.execute('''
SELECT alert_type, severity, COUNT(*) as count
FROM model_alerts
WHERE model_id = ? AND timestamp >= ?
GROUP BY alert_type, severity
''', (model_id, start_time.isoformat()))
alert_summary = {}
total_alerts = 0
for alert_type, severity, count in cursor.fetchall():
if alert_type not in alert_summary:
alert_summary[alert_type] = {}
alert_summary[alert_type][severity] = count
total_alerts += count
report["alerts_summary"] = {
"total_alerts": total_alerts,
"by_type_and_severity": alert_summary
}
# Calculate health score (0-100)
health_score = 100.0
# Reduce score for poor performance
if report["performance_metrics"]:
avg_accuracy = report["performance_metrics"]["avg_accuracy"]
avg_error_rate = report["performance_metrics"]["avg_error_rate"]
if avg_accuracy < 0.8:
health_score -= (0.8 - avg_accuracy) * 100
if avg_error_rate > 0.1:
health_score -= (avg_error_rate - 0.1) * 200
# Reduce score for data drift
if report["drift_analysis"]:
drift_penalty = report["drift_analysis"]["drift_percentage"] * 0.5
health_score -= drift_penalty
# Reduce score for alerts
critical_alerts = sum(
alert_summary.get(alert_type, {}).get('critical', 0)
for alert_type in alert_summary
)
high_alerts = sum(
alert_summary.get(alert_type, {}).get('high', 0)
for alert_type in alert_summary
)
health_score -= critical_alerts * 10 + high_alerts * 5
report["health_score"] = max(0.0, min(100.0, health_score))
# Generate recommendations
if report["health_score"] < 70:
report["recommendations"].append("Model health is concerning - investigate performance issues")
if report["drift_analysis"].get("drift_percentage", 0) > 20:
report["recommendations"].append("Significant data drift detected - consider retraining")
if report["performance_metrics"].get("avg_error_rate", 0) > 0.1:
report["recommendations"].append("High error rate - review model and input data quality")
if critical_alerts > 0:
report["recommendations"].append("Critical alerts present - immediate attention required")
return report
def get_alerts(self, model_id: str = None, severity: str = None,
unresolved_only: bool = True, limit: int = 50) -> List[Dict[str, Any]]:
"""Get model alerts with filtering options"""
query = 'SELECT * FROM model_alerts WHERE 1=1'
params = []
if model_id:
query += ' AND model_id = ?'
params.append(model_id)
if severity:
query += ' AND severity = ?'
params.append(severity)
if unresolved_only:
query += ' AND resolved = 0'
query += ' ORDER BY timestamp DESC LIMIT ?'
params.append(limit)
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute(query, params)
columns = [desc[0] for desc in cursor.description]
alerts = []
for row in cursor.fetchall():
alert = dict(zip(columns, row))
alert['acknowledged'] = bool(alert['acknowledged'])
alert['resolved'] = bool(alert['resolved'])
alerts.append(alert)
return alerts
def acknowledge_alert(self, alert_id: str) -> None:
"""Acknowledge an alert"""
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
UPDATE model_alerts
SET acknowledged = 1
WHERE alert_id = ?
''', (alert_id,))
conn.commit()
def resolve_alert(self, alert_id: str) -> None:
"""Resolve an alert"""
with sqlite3.connect(self.db_path) as conn:
conn.execute('''
UPDATE model_alerts
SET resolved = 1, acknowledged = 1
WHERE alert_id = ?
''', (alert_id,))
conn.commit()
# Example usage and testing
if __name__ == "__main__":
# Initialize model monitor
monitor = ModelMonitor()
print("π Model Monitoring System Testing:")
print("=" * 50)
# Register test models
model_ids = ["threat_cnn_001", "anomaly_lstm_001"]
monitor.register_model(
"threat_cnn_001",
"Threat Detection CNN",
"v1.0",
"cnn",
metadata={"purpose": "malware detection", "training_date": "2024-01-15"}
)
monitor.register_model(
"anomaly_lstm_001",
"Network Anomaly LSTM",
"v1.0",
"lstm",
metadata={"purpose": "network anomaly detection", "training_date": "2024-01-20"}
)
# Set performance baselines
print("\nπ― Setting performance baselines...")
monitor.set_performance_baseline("threat_cnn_001", "accuracy", 0.95, tolerance=0.05)
monitor.set_performance_baseline("threat_cnn_001", "error_rate", 0.02, tolerance=0.5)
monitor.set_performance_baseline("anomaly_lstm_001", "accuracy", 0.92, tolerance=0.05)
# Simulate monitoring data
print("\nπ Logging performance metrics...")
for i in range(10):
# Good performance metrics
metrics1 = ModelMetrics(
model_id="threat_cnn_001",
timestamp=datetime.now().isoformat(),
accuracy=0.94 + np.random.normal(0, 0.01),
precision=0.93 + np.random.normal(0, 0.01),
recall=0.92 + np.random.normal(0, 0.01),
f1_score=0.925 + np.random.normal(0, 0.01),
auc_roc=0.96 + np.random.normal(0, 0.005),
prediction_latency_ms=45 + np.random.normal(0, 5),
throughput_rps=100 + np.random.normal(0, 10),
error_rate=0.02 + np.random.normal(0, 0.005),
custom_metrics={"cyber_threat_score": 0.87 + np.random.normal(0, 0.02)}
)
# Degrading performance for second model
performance_decay = 0.05 * i # Gradually decrease performance
metrics2 = ModelMetrics(
model_id="anomaly_lstm_001",
timestamp=datetime.now().isoformat(),
accuracy=0.92 - performance_decay + np.random.normal(0, 0.01),
precision=0.90 - performance_decay + np.random.normal(0, 0.01),
recall=0.89 - performance_decay + np.random.normal(0, 0.01),
f1_score=0.895 - performance_decay + np.random.normal(0, 0.01),
auc_roc=0.93 - performance_decay + np.random.normal(0, 0.005),
prediction_latency_ms=60 + i * 5 + np.random.normal(0, 5), # Increasing latency
throughput_rps=80 - i * 2 + np.random.normal(0, 5), # Decreasing throughput
error_rate=0.03 + i * 0.01 + np.random.normal(0, 0.005), # Increasing errors
custom_metrics={"anomaly_detection_score": 0.85 - performance_decay}
)
monitor.log_metrics("threat_cnn_001", metrics1)
monitor.log_metrics("anomaly_lstm_001", metrics2)
# Test data drift detection
print("\nπ Testing data drift detection...")
# Simulate feature data
baseline_features = {
'packet_size': np.random.normal(1000, 200, 1000),
'connection_duration': np.random.exponential(5, 1000),
'port_number': np.random.choice(range(1, 65536), 1000)
}
# Simulate drifted current data
current_features = {
'packet_size': np.random.normal(1200, 300, 500), # Different distribution
'connection_duration': np.random.exponential(8, 500), # Different parameter
'port_number': np.random.choice(range(1, 65536), 500) # Same distribution
}
drift_metrics = monitor.detect_data_drift(
"anomaly_lstm_001",
current_features,
baseline_features,
method='ks_test',
threshold=0.05
)
print(f" Detected drift in {sum(1 for m in drift_metrics if m.is_drifting)} out of {len(drift_metrics)} features")
for metric in drift_metrics:
status = "π¨ DRIFT" if metric.is_drifting else "β
OK"
print(f" {metric.feature_name}: {status} (score: {metric.drift_score:.4f})")
# Generate health reports
print("\nπ₯ Generating model health reports...")
for model_id in model_ids:
report = monitor.get_model_health_report(model_id, days=7)
print(f"\n {model_id}:")
print(f" Health Score: {report['health_score']:.1f}/100")
print(f" Alerts: {report['alerts_summary']['total_alerts']}")
if report['performance_metrics']:
print(f" Avg Accuracy: {report['performance_metrics']['avg_accuracy']:.3f}")
print(f" Avg Error Rate: {report['performance_metrics']['avg_error_rate']:.3f}")
if report['recommendations']:
print(f" Recommendations: {len(report['recommendations'])}")
for rec in report['recommendations'][:2]: # Show first 2
print(f" - {rec}")
# Show recent alerts
print("\nπ¨ Recent Alerts:")
alerts = monitor.get_alerts(limit=10)
for alert in alerts[:5]: # Show top 5
print(f" - {alert['severity'].upper()}: {alert['message']}")
print(f"\nβ
Model Monitoring System implemented - {len(alerts)} alerts generated")
|