File size: 41,025 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
"""
Reinforcement Learning for Adaptive Cyber Defense
Continuous learning and adaptation for cybersecurity strategies
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
import random
from typing import Dict, List, Optional, Any, Tuple, Union
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
import logging
from abc import ABC, abstractmethod
from collections import deque, defaultdict
import sqlite3
import pickle
from enum import Enum
import gym
from gym import spaces
import asyncio

class ActionType(Enum):
    BLOCK_IP = "block_ip"
    ALLOW_IP = "allow_ip"
    QUARANTINE_HOST = "quarantine_host"
    PATCH_SYSTEM = "patch_system"
    UPDATE_RULES = "update_rules"
    SCAN_NETWORK = "scan_network"
    ISOLATE_SEGMENT = "isolate_segment"
    ESCALATE_ALERT = "escalate_alert"
    COLLECT_EVIDENCE = "collect_evidence"
    NO_ACTION = "no_action"

@dataclass
class CyberState:
    """State representation for cybersecurity environment"""
    timestamp: str
    network_traffic: Dict[str, float]
    active_connections: List[Dict[str, Any]]
    security_alerts: List[Dict[str, Any]]
    system_health: Dict[str, float]
    threat_indicators: Dict[str, float]
    previous_actions: List[str]
    environment_context: Dict[str, Any]

@dataclass
class CyberAction:
    """Action representation for cybersecurity decisions"""
    action_type: ActionType
    parameters: Dict[str, Any]
    confidence: float
    expected_impact: float
    resource_cost: float
    timestamp: str

@dataclass
class CyberReward:
    """Reward structure for cyber defense RL"""
    security_improvement: float
    false_positive_penalty: float
    resource_efficiency: float
    response_time_bonus: float
    total_reward: float
    detailed_breakdown: Dict[str, float]

class CyberDefenseEnvironment(gym.Env):
    """Gym environment for cybersecurity reinforcement learning"""
    
    def __init__(self, config: Dict[str, Any] = None):
        super().__init__()
        
        self.config = config or {}
        self.logger = logging.getLogger(__name__)
        
        # Environment parameters
        self.max_timesteps = self.config.get('max_timesteps', 1000)
        self.attack_probability = self.config.get('attack_probability', 0.1)
        self.false_positive_rate = self.config.get('false_positive_rate', 0.05)
        
        # State space: network metrics, alerts, system health, etc.
        self.observation_space = spaces.Box(
            low=0.0, high=1.0, shape=(50,), dtype=np.float32
        )
        
        # Action space: different cyber defense actions
        self.action_space = spaces.Discrete(len(ActionType))
        
        # Environment state
        self.current_state = None
        self.timestep = 0
        self.attack_in_progress = False
        self.attack_type = None
        self.network_state = self._initialize_network_state()
        
        # Metrics tracking
        self.episode_metrics = {
            'attacks_detected': 0,
            'attacks_blocked': 0,
            'false_positives': 0,
            'response_times': [],
            'resource_usage': 0.0,
            'total_reward': 0.0
        }
        
    def _initialize_network_state(self) -> Dict[str, Any]:
        """Initialize network state simulation"""
        return {
            'hosts': {f'host_{i}': {'status': 'normal', 'risk': 0.1} for i in range(20)},
            'services': {f'service_{i}': {'status': 'active', 'load': 0.3} for i in range(10)},
            'network_segments': {f'segment_{i}': {'traffic': 0.5, 'anomalies': 0.0} for i in range(5)},
            'security_controls': {
                'firewall': {'status': 'active', 'rules': 100},
                'ids': {'status': 'active', 'sensitivity': 0.7},
                'antivirus': {'status': 'active', 'definitions': 'updated'}
            }
        }
    
    def _generate_state_vector(self) -> np.ndarray:
        """Convert current environment state to observation vector"""
        state_vector = []
        
        # Network traffic metrics (10 features)
        traffic_metrics = [
            np.mean([self.network_state['network_segments'][seg]['traffic'] 
                    for seg in self.network_state['network_segments']]),
            np.max([self.network_state['network_segments'][seg]['traffic'] 
                   for seg in self.network_state['network_segments']]),
            np.std([self.network_state['network_segments'][seg]['traffic'] 
                   for seg in self.network_state['network_segments']]),
            np.mean([self.network_state['network_segments'][seg]['anomalies'] 
                    for seg in self.network_state['network_segments']]),
            np.sum([1 for host in self.network_state['hosts'].values() 
                   if host['status'] != 'normal']) / len(self.network_state['hosts']),
            np.mean([host['risk'] for host in self.network_state['hosts'].values()]),
            np.sum([1 for service in self.network_state['services'].values() 
                   if service['status'] == 'active']) / len(self.network_state['services']),
            np.mean([service['load'] for service in self.network_state['services'].values()]),
            1.0 if self.attack_in_progress else 0.0,
            self.timestep / self.max_timesteps
        ]
        state_vector.extend(traffic_metrics)
        
        # Security controls status (10 features)
        controls = self.network_state['security_controls']
        control_features = [
            1.0 if controls['firewall']['status'] == 'active' else 0.0,
            controls['firewall']['rules'] / 200.0,  # Normalize
            1.0 if controls['ids']['status'] == 'active' else 0.0,
            controls['ids']['sensitivity'],
            1.0 if controls['antivirus']['status'] == 'active' else 0.0,
            1.0 if controls['antivirus']['definitions'] == 'updated' else 0.0,
            # Additional derived features
            np.mean([1.0 if ctrl['status'] == 'active' else 0.0 
                    for ctrl in controls.values() if 'status' in ctrl]),
            self.episode_metrics['attacks_detected'] / max(1, self.timestep),
            self.episode_metrics['false_positives'] / max(1, self.timestep),
            self.episode_metrics['resource_usage'] / max(1, self.timestep)
        ]
        state_vector.extend(control_features)
        
        # Historical context (15 features)
        recent_actions = self.current_state.previous_actions[-10:] if self.current_state else []
        action_history = [0.0] * 10
        for i, action in enumerate(recent_actions):
            if i < len(action_history):
                action_history[i] = list(ActionType).index(ActionType(action)) / len(ActionType)
        
        context_features = action_history + [
            len(self.current_state.security_alerts) / 10.0 if self.current_state else 0.0,
            len(self.current_state.active_connections) / 100.0 if self.current_state else 0.0,
            np.mean(list(self.current_state.threat_indicators.values())) if self.current_state else 0.0,
            np.max(list(self.current_state.threat_indicators.values())) if self.current_state else 0.0,
            np.std(list(self.current_state.threat_indicators.values())) if self.current_state else 0.0
        ]
        state_vector.extend(context_features)
        
        # Threat landscape (15 features)
        threat_features = []
        if self.current_state:
            indicators = self.current_state.threat_indicators
            threat_features = [
                indicators.get('malware_probability', 0.0),
                indicators.get('intrusion_probability', 0.0),
                indicators.get('ddos_probability', 0.0),
                indicators.get('lateral_movement_probability', 0.0),
                indicators.get('data_exfiltration_probability', 0.0),
                indicators.get('credential_theft_probability', 0.0),
                indicators.get('ransomware_probability', 0.0),
                indicators.get('phishing_probability', 0.0),
                indicators.get('insider_threat_probability', 0.0),
                indicators.get('apt_probability', 0.0),
                # Derived features
                max(indicators.values()) if indicators else 0.0,
                min(indicators.values()) if indicators else 0.0,
                np.mean(list(indicators.values())) if indicators else 0.0,
                np.std(list(indicators.values())) if indicators else 0.0,
                len([v for v in indicators.values() if v > 0.5]) / max(1, len(indicators))
            ]
        else:
            threat_features = [0.0] * 15
        
        state_vector.extend(threat_features)
        
        # Ensure exactly 50 features
        while len(state_vector) < 50:
            state_vector.append(0.0)
        
        return np.array(state_vector[:50], dtype=np.float32)
    
    def _simulate_attack(self) -> Tuple[bool, str]:
        """Simulate potential cyber attacks"""
        if random.random() < self.attack_probability:
            attack_types = ['malware', 'intrusion', 'ddos', 'lateral_movement', 
                          'data_exfiltration', 'ransomware', 'phishing']
            attack_type = random.choice(attack_types)
            
            # Update network state based on attack
            if attack_type == 'malware':
                # Infect random hosts
                infected_hosts = random.sample(list(self.network_state['hosts'].keys()), 
                                             random.randint(1, 3))
                for host in infected_hosts:
                    self.network_state['hosts'][host]['status'] = 'infected'
                    self.network_state['hosts'][host]['risk'] = 0.9
            
            elif attack_type == 'ddos':
                # Increase traffic and service load
                for segment in self.network_state['network_segments'].values():
                    segment['traffic'] = min(1.0, segment['traffic'] + 0.3)
                for service in self.network_state['services'].values():
                    service['load'] = min(1.0, service['load'] + 0.4)
            
            elif attack_type == 'intrusion':
                # Compromise random host
                target_host = random.choice(list(self.network_state['hosts'].keys()))
                self.network_state['hosts'][target_host]['status'] = 'compromised'
                self.network_state['hosts'][target_host]['risk'] = 0.95
            
            return True, attack_type
        
        return False, None
    
    def _execute_action(self, action_idx: int) -> Dict[str, Any]:
        """Execute the chosen action and return its effects"""
        action_type = list(ActionType)[action_idx]
        action_effects = {
            'success': False,
            'impact': 0.0,
            'cost': 0.0,
            'side_effects': []
        }
        
        if action_type == ActionType.BLOCK_IP:
            # Block suspicious IP addresses
            action_effects['success'] = True
            action_effects['impact'] = 0.3 if self.attack_in_progress else -0.1  # False positive penalty
            action_effects['cost'] = 0.1
            
            if self.attack_in_progress and self.attack_type in ['intrusion', 'ddos']:
                # Effective against network-based attacks
                action_effects['impact'] = 0.6
                self.attack_in_progress = False
        
        elif action_type == ActionType.QUARANTINE_HOST:
            # Quarantine infected/suspicious hosts
            action_effects['success'] = True
            action_effects['cost'] = 0.3
            
            infected_hosts = [host for host, info in self.network_state['hosts'].items() 
                            if info['status'] in ['infected', 'compromised']]
            
            if infected_hosts:
                # Quarantine infected host
                target_host = random.choice(infected_hosts)
                self.network_state['hosts'][target_host]['status'] = 'quarantined'
                action_effects['impact'] = 0.7
                if self.attack_type == 'malware':
                    self.attack_in_progress = False
            else:
                # False positive
                action_effects['impact'] = -0.2
        
        elif action_type == ActionType.PATCH_SYSTEM:
            # Apply security patches
            action_effects['success'] = True
            action_effects['cost'] = 0.2
            action_effects['impact'] = 0.1  # Preventive measure
            
            # Reduce overall risk
            for host in self.network_state['hosts'].values():
                host['risk'] = max(0.1, host['risk'] - 0.1)
        
        elif action_type == ActionType.UPDATE_RULES:
            # Update firewall/IDS rules
            action_effects['success'] = True
            action_effects['cost'] = 0.1
            action_effects['impact'] = 0.2
            
            self.network_state['security_controls']['firewall']['rules'] += 10
            self.network_state['security_controls']['ids']['sensitivity'] = min(1.0, 
                self.network_state['security_controls']['ids']['sensitivity'] + 0.1)
        
        elif action_type == ActionType.SCAN_NETWORK:
            # Perform network security scan
            action_effects['success'] = True
            action_effects['cost'] = 0.2
            action_effects['impact'] = 0.15  # Information gathering
            
            # Detect hidden threats
            for segment in self.network_state['network_segments'].values():
                segment['anomalies'] = max(0.0, segment['anomalies'] - 0.2)
        
        elif action_type == ActionType.ISOLATE_SEGMENT:
            # Isolate network segment
            action_effects['success'] = True
            action_effects['cost'] = 0.4
            
            if self.attack_type == 'lateral_movement':
                action_effects['impact'] = 0.8
                self.attack_in_progress = False
            else:
                action_effects['impact'] = -0.1  # May affect normal operations
        
        elif action_type == ActionType.NO_ACTION:
            # Do nothing
            action_effects['success'] = True
            action_effects['cost'] = 0.0
            action_effects['impact'] = -0.1 if self.attack_in_progress else 0.0
        
        return action_effects
    
    def _calculate_reward(self, action_effects: Dict[str, Any]) -> CyberReward:
        """Calculate reward based on action outcomes and environment state"""
        
        # Security improvement component
        security_improvement = action_effects['impact']
        
        # False positive penalty
        false_positive_penalty = 0.0
        if not self.attack_in_progress and action_effects['impact'] < 0:
            false_positive_penalty = abs(action_effects['impact'])
            self.episode_metrics['false_positives'] += 1
        
        # Resource efficiency (favor low-cost effective actions)
        resource_efficiency = max(0, 0.1 - action_effects['cost'])
        
        # Response time bonus (quicker responses to attacks are better)
        response_time_bonus = 0.0
        if self.attack_in_progress and action_effects['impact'] > 0:
            response_time_bonus = 0.1
            self.episode_metrics['attacks_blocked'] += 1
        
        # Calculate total reward
        total_reward = (
            security_improvement + 
            resource_efficiency + 
            response_time_bonus - 
            false_positive_penalty
        )
        
        # Update metrics
        self.episode_metrics['resource_usage'] += action_effects['cost']
        self.episode_metrics['total_reward'] += total_reward
        
        return CyberReward(
            security_improvement=security_improvement,
            false_positive_penalty=false_positive_penalty,
            resource_efficiency=resource_efficiency,
            response_time_bonus=response_time_bonus,
            total_reward=total_reward,
            detailed_breakdown={
                'security_improvement': security_improvement,
                'resource_efficiency': resource_efficiency,
                'response_time_bonus': response_time_bonus,
                'false_positive_penalty': -false_positive_penalty
            }
        )
    
    def reset(self) -> np.ndarray:
        """Reset environment to initial state"""
        self.timestep = 0
        self.attack_in_progress = False
        self.attack_type = None
        self.network_state = self._initialize_network_state()
        
        # Reset metrics
        self.episode_metrics = {
            'attacks_detected': 0,
            'attacks_blocked': 0,
            'false_positives': 0,
            'response_times': [],
            'resource_usage': 0.0,
            'total_reward': 0.0
        }
        
        # Generate initial state
        self.current_state = CyberState(
            timestamp=datetime.now().isoformat(),
            network_traffic={'total': 0.3, 'suspicious': 0.1},
            active_connections=[],
            security_alerts=[],
            system_health={'cpu': 0.4, 'memory': 0.3, 'disk': 0.2},
            threat_indicators={
                'malware_probability': 0.1,
                'intrusion_probability': 0.1,
                'ddos_probability': 0.05,
                'lateral_movement_probability': 0.05,
                'data_exfiltration_probability': 0.05
            },
            previous_actions=[],
            environment_context={'time_of_day': 'business_hours'}
        )
        
        return self._generate_state_vector()
    
    def step(self, action: int) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]:
        """Execute one step in the environment"""
        self.timestep += 1
        
        # Simulate potential attacks
        attack_occurred, attack_type = self._simulate_attack()
        if attack_occurred:
            self.attack_in_progress = True
            self.attack_type = attack_type
            self.episode_metrics['attacks_detected'] += 1
        
        # Execute chosen action
        action_effects = self._execute_action(action)
        
        # Calculate reward
        reward_info = self._calculate_reward(action_effects)
        
        # Update state
        action_name = list(ActionType)[action].value
        if self.current_state:
            self.current_state.previous_actions.append(action_name)
            self.current_state.previous_actions = self.current_state.previous_actions[-10:]  # Keep last 10
        
        # Update threat indicators based on current situation
        if self.attack_in_progress:
            threat_boost = 0.3
            if self.attack_type in self.current_state.threat_indicators:
                self.current_state.threat_indicators[f"{self.attack_type}_probability"] = min(1.0,
                    self.current_state.threat_indicators.get(f"{self.attack_type}_probability", 0.1) + threat_boost)
        
        # Check if episode is done
        done = (
            self.timestep >= self.max_timesteps or
            self.episode_metrics['resource_usage'] > 5.0 or  # Resource limit
            self.episode_metrics['false_positives'] > 20   # Too many false positives
        )
        
        # Prepare info dictionary
        info = {
            'attack_in_progress': self.attack_in_progress,
            'attack_type': self.attack_type,
            'action_effects': action_effects,
            'reward_breakdown': asdict(reward_info),
            'episode_metrics': self.episode_metrics.copy(),
            'timestep': self.timestep
        }
        
        return self._generate_state_vector(), reward_info.total_reward, done, info

class DQNAgent(nn.Module):
    """Deep Q-Network agent for cyber defense"""
    
    def __init__(self, state_dim: int, action_dim: int, hidden_dim: int = 256):
        super().__init__()
        
        self.state_dim = state_dim
        self.action_dim = action_dim
        
        # Neural network layers
        self.network = nn.Sequential(
            nn.Linear(state_dim, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, action_dim)
        )
        
        # Dueling DQN components
        self.value_head = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Linear(hidden_dim // 2, 1)
        )
        
        self.advantage_head = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim // 2),
            nn.ReLU(),
            nn.Linear(hidden_dim // 2, action_dim)
        )
        
        # Feature extractor
        self.feature_extractor = nn.Sequential(
            nn.Linear(state_dim, hidden_dim),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(hidden_dim, hidden_dim),
            nn.ReLU()
        )
        
    def forward(self, state: torch.Tensor) -> torch.Tensor:
        """Forward pass through the network"""
        # Extract features
        features = self.feature_extractor(state)
        
        # Dueling DQN: Q(s,a) = V(s) + A(s,a) - mean(A(s,a))
        value = self.value_head(features)
        advantage = self.advantage_head(features)
        
        # Combine value and advantage
        q_values = value + (advantage - advantage.mean(dim=-1, keepdim=True))
        
        return q_values

class CyberDefenseRL:
    """Reinforcement Learning system for adaptive cyber defense"""
    
    def __init__(self, config: Dict[str, Any] = None, database_path: str = "cyber_rl.db"):
        self.config = config or {}
        self.database_path = database_path
        self.logger = logging.getLogger(__name__)
        
        # Initialize database
        self._init_database()
        
        # Environment
        self.env = CyberDefenseEnvironment(self.config.get('env_config', {}))
        
        # Agent configuration
        self.state_dim = self.env.observation_space.shape[0]
        self.action_dim = self.env.action_space.n
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # DQN Agent
        self.q_network = DQNAgent(self.state_dim, self.action_dim).to(self.device)
        self.target_network = DQNAgent(self.state_dim, self.action_dim).to(self.device)
        
        # Copy parameters to target network
        self.target_network.load_state_dict(self.q_network.state_dict())
        
        # Training parameters
        self.learning_rate = self.config.get('learning_rate', 1e-4)
        self.gamma = self.config.get('gamma', 0.99)
        self.epsilon = self.config.get('epsilon_start', 1.0)
        self.epsilon_min = self.config.get('epsilon_min', 0.01)
        self.epsilon_decay = self.config.get('epsilon_decay', 0.995)
        self.batch_size = self.config.get('batch_size', 32)
        self.memory_size = self.config.get('memory_size', 10000)
        self.target_update_freq = self.config.get('target_update_freq', 100)
        
        # Experience replay buffer
        self.memory = deque(maxlen=self.memory_size)
        
        # Optimizer
        self.optimizer = torch.optim.Adam(self.q_network.parameters(), lr=self.learning_rate)
        
        # Training state
        self.total_steps = 0
        self.episode_count = 0
        self.training_metrics = defaultdict(list)
        
    def _init_database(self):
        """Initialize SQLite database for storing training data"""
        with sqlite3.connect(self.database_path) as conn:
            conn.execute("""
                CREATE TABLE IF NOT EXISTS training_episodes (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    episode_number INTEGER NOT NULL,
                    total_reward REAL NOT NULL,
                    episode_length INTEGER NOT NULL,
                    epsilon REAL NOT NULL,
                    metrics TEXT,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
            
            conn.execute("""
                CREATE TABLE IF NOT EXISTS experience_replay (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    state BLOB NOT NULL,
                    action INTEGER NOT NULL,
                    reward REAL NOT NULL,
                    next_state BLOB NOT NULL,
                    done INTEGER NOT NULL,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
            
            conn.execute("""
                CREATE TABLE IF NOT EXISTS model_checkpoints (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    episode_number INTEGER NOT NULL,
                    model_state BLOB NOT NULL,
                    optimizer_state BLOB NOT NULL,
                    training_metrics BLOB,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
    
    def select_action(self, state: np.ndarray, training: bool = True) -> int:
        """Select action using epsilon-greedy policy"""
        if training and random.random() < self.epsilon:
            return self.env.action_space.sample()
        
        with torch.no_grad():
            state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)
            q_values = self.q_network(state_tensor)
            return q_values.argmax().item()
    
    def store_experience(self, state: np.ndarray, action: int, reward: float, 
                        next_state: np.ndarray, done: bool):
        """Store experience in replay buffer"""
        self.memory.append((state, action, reward, next_state, done))
        
        # Also store in database for persistence
        with sqlite3.connect(self.database_path) as conn:
            conn.execute(
                "INSERT INTO experience_replay (state, action, reward, next_state, done) VALUES (?, ?, ?, ?, ?)",
                (pickle.dumps(state), action, reward, pickle.dumps(next_state), int(done))
            )
    
    def train_step(self) -> Dict[str, float]:
        """Perform one training step"""
        if len(self.memory) < self.batch_size:
            return {}
        
        # Sample batch from memory
        batch = random.sample(self.memory, self.batch_size)
        states = torch.FloatTensor([e[0] for e in batch]).to(self.device)
        actions = torch.LongTensor([e[1] for e in batch]).to(self.device)
        rewards = torch.FloatTensor([e[2] for e in batch]).to(self.device)
        next_states = torch.FloatTensor([e[3] for e in batch]).to(self.device)
        dones = torch.BoolTensor([e[4] for e in batch]).to(self.device)
        
        # Current Q values
        current_q_values = self.q_network(states).gather(1, actions.unsqueeze(1))
        
        # Next Q values from target network
        next_q_values = self.target_network(next_states).max(1)[0].detach()
        target_q_values = rewards + (self.gamma * next_q_values * ~dones)
        
        # Compute loss
        loss = F.mse_loss(current_q_values.squeeze(), target_q_values)
        
        # Optimize
        self.optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(self.q_network.parameters(), max_norm=10.0)
        self.optimizer.step()
        
        # Update target network
        if self.total_steps % self.target_update_freq == 0:
            self.target_network.load_state_dict(self.q_network.state_dict())
        
        return {
            'loss': loss.item(),
            'q_value_mean': current_q_values.mean().item(),
            'target_q_mean': target_q_values.mean().item()
        }
    
    def train_episode(self) -> Dict[str, Any]:
        """Train for one episode"""
        state = self.env.reset()
        total_reward = 0.0
        episode_length = 0
        episode_info = []
        
        while True:
            # Select action
            action = self.select_action(state, training=True)
            
            # Take step
            next_state, reward, done, info = self.env.step(action)
            
            # Store experience
            self.store_experience(state, action, reward, next_state, done)
            
            # Train
            train_metrics = self.train_step()
            
            # Update state
            state = next_state
            total_reward += reward
            episode_length += 1
            self.total_steps += 1
            
            # Store step info
            episode_info.append({
                'action': list(ActionType)[action].value,
                'reward': reward,
                'info': info
            })
            
            if done:
                break
        
        # Update epsilon
        self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
        self.episode_count += 1
        
        # Prepare episode results
        episode_results = {
            'episode_number': self.episode_count,
            'total_reward': total_reward,
            'episode_length': episode_length,
            'epsilon': self.epsilon,
            'final_metrics': self.env.episode_metrics,
            'step_info': episode_info,
            'training_metrics': train_metrics
        }
        
        # Save episode to database
        self._save_episode(episode_results)
        
        return episode_results
    
    def _save_episode(self, episode_results: Dict[str, Any]):
        """Save episode results to database"""
        metrics_json = json.dumps(episode_results['final_metrics'])
        
        with sqlite3.connect(self.database_path) as conn:
            conn.execute(
                "INSERT INTO training_episodes (episode_number, total_reward, episode_length, epsilon, metrics) VALUES (?, ?, ?, ?, ?)",
                (episode_results['episode_number'], episode_results['total_reward'], 
                 episode_results['episode_length'], episode_results['epsilon'], metrics_json)
            )
    
    def save_model(self, filepath: str = None):
        """Save model checkpoint"""
        if filepath is None:
            filepath = f"cyber_defense_model_episode_{self.episode_count}.pth"
        
        checkpoint = {
            'episode_count': self.episode_count,
            'total_steps': self.total_steps,
            'q_network_state': self.q_network.state_dict(),
            'target_network_state': self.target_network.state_dict(),
            'optimizer_state': self.optimizer.state_dict(),
            'epsilon': self.epsilon,
            'config': self.config,
            'training_metrics': dict(self.training_metrics)
        }
        
        torch.save(checkpoint, filepath)
        
        # Also save to database
        with sqlite3.connect(self.database_path) as conn:
            conn.execute(
                "INSERT INTO model_checkpoints (episode_number, model_state, optimizer_state, training_metrics) VALUES (?, ?, ?, ?)",
                (self.episode_count, pickle.dumps(checkpoint['q_network_state']),
                 pickle.dumps(checkpoint['optimizer_state']), pickle.dumps(checkpoint['training_metrics']))
            )
        
        self.logger.info(f"Model saved to {filepath}")
    
    def load_model(self, filepath: str):
        """Load model checkpoint"""
        checkpoint = torch.load(filepath, map_location=self.device)
        
        self.episode_count = checkpoint['episode_count']
        self.total_steps = checkpoint['total_steps']
        self.q_network.load_state_dict(checkpoint['q_network_state'])
        self.target_network.load_state_dict(checkpoint['target_network_state'])
        self.optimizer.load_state_dict(checkpoint['optimizer_state'])
        self.epsilon = checkpoint['epsilon']
        self.training_metrics = defaultdict(list, checkpoint.get('training_metrics', {}))
        
        self.logger.info(f"Model loaded from {filepath}")
    
    def evaluate(self, num_episodes: int = 10) -> Dict[str, Any]:
        """Evaluate the trained agent"""
        evaluation_results = []
        
        for episode in range(num_episodes):
            state = self.env.reset()
            total_reward = 0.0
            episode_length = 0
            actions_taken = []
            
            while True:
                # Select action (no exploration)
                action = self.select_action(state, training=False)
                actions_taken.append(list(ActionType)[action].value)
                
                # Take step
                next_state, reward, done, info = self.env.step(action)
                
                state = next_state
                total_reward += reward
                episode_length += 1
                
                if done:
                    break
            
            evaluation_results.append({
                'episode': episode,
                'total_reward': total_reward,
                'episode_length': episode_length,
                'actions_taken': actions_taken,
                'final_metrics': self.env.episode_metrics.copy()
            })
        
        # Calculate aggregate statistics
        total_rewards = [r['total_reward'] for r in evaluation_results]
        episode_lengths = [r['episode_length'] for r in evaluation_results]
        
        aggregate_stats = {
            'num_episodes': num_episodes,
            'mean_reward': np.mean(total_rewards),
            'std_reward': np.std(total_rewards),
            'min_reward': min(total_rewards),
            'max_reward': max(total_rewards),
            'mean_episode_length': np.mean(episode_lengths),
            'success_rate': len([r for r in total_rewards if r > 0]) / num_episodes,
            'individual_episodes': evaluation_results
        }
        
        return aggregate_stats
    
    def get_action_recommendations(self, current_state: CyberState) -> List[Dict[str, Any]]:
        """Get action recommendations for a given state"""
        # Convert CyberState to observation vector
        self.env.current_state = current_state
        state_vector = self.env._generate_state_vector()
        
        # Get Q-values for all actions
        with torch.no_grad():
            state_tensor = torch.FloatTensor(state_vector).unsqueeze(0).to(self.device)
            q_values = self.q_network(state_tensor).squeeze().cpu().numpy()
        
        # Create recommendations
        recommendations = []
        for i, q_value in enumerate(q_values):
            action_type = list(ActionType)[i]
            recommendations.append({
                'action': action_type.value,
                'q_value': float(q_value),
                'confidence': float(torch.softmax(torch.tensor(q_values), dim=0)[i]),
                'description': self._get_action_description(action_type)
            })
        
        # Sort by Q-value
        recommendations.sort(key=lambda x: x['q_value'], reverse=True)
        
        return recommendations
    
    def _get_action_description(self, action_type: ActionType) -> str:
        """Get human-readable description of action"""
        descriptions = {
            ActionType.BLOCK_IP: "Block suspicious IP addresses from accessing the network",
            ActionType.ALLOW_IP: "Allow blocked IP addresses to resume network access", 
            ActionType.QUARANTINE_HOST: "Isolate potentially compromised hosts from the network",
            ActionType.PATCH_SYSTEM: "Apply security patches to vulnerable systems",
            ActionType.UPDATE_RULES: "Update firewall and IDS rules to improve detection",
            ActionType.SCAN_NETWORK: "Perform comprehensive network security scan",
            ActionType.ISOLATE_SEGMENT: "Isolate network segment to contain potential threats",
            ActionType.ESCALATE_ALERT: "Escalate security alert to human analysts",
            ActionType.COLLECT_EVIDENCE: "Collect forensic evidence for incident analysis",
            ActionType.NO_ACTION: "Take no immediate action and continue monitoring"
        }
        return descriptions.get(action_type, "Unknown action")

# Example usage and testing
if __name__ == "__main__":
    print("🤖 Reinforcement Learning for Cyber Defense Testing:")
    print("=" * 60)
    
    # Initialize the RL system
    config = {
        'learning_rate': 1e-4,
        'gamma': 0.99,
        'epsilon_start': 1.0,
        'epsilon_min': 0.01,
        'epsilon_decay': 0.995,
        'batch_size': 32,
        'target_update_freq': 100,
        'env_config': {
            'max_timesteps': 200,
            'attack_probability': 0.15,
            'false_positive_rate': 0.05
        }
    }
    
    rl_system = CyberDefenseRL(config)
    print(f"  Initialized RL system with state dim: {rl_system.state_dim}, action dim: {rl_system.action_dim}")
    
    # Test environment
    print("\n🌍 Testing cyber defense environment...")
    state = rl_system.env.reset()
    print(f"  Initial state shape: {state.shape}")
    print(f"  Sample state values: {state[:10]}")
    
    # Test action selection
    print("\n🎯 Testing action selection...")
    for i in range(5):
        action = rl_system.select_action(state, training=True)
        next_state, reward, done, info = rl_system.env.step(action)
        action_name = list(ActionType)[action].value
        print(f"  Step {i+1}: Action={action_name}, Reward={reward:.3f}, Attack={info['attack_in_progress']}")
        state = next_state
        if done:
            break
    
    # Test short training run
    print("\n🏋️ Testing training episode...")
    episode_results = rl_system.train_episode()
    print(f"  Episode {episode_results['episode_number']}: Reward={episode_results['total_reward']:.2f}, Length={episode_results['episode_length']}")
    print(f"  Final metrics: {episode_results['final_metrics']}")
    print(f"  Epsilon: {episode_results['epsilon']:.3f}")
    
    # Test multiple episodes
    print("\n📊 Testing multiple training episodes...")
    for episode in range(3):
        episode_results = rl_system.train_episode()
        attacks_blocked = episode_results['final_metrics']['attacks_blocked']
        attacks_detected = episode_results['final_metrics']['attacks_detected']
        false_positives = episode_results['final_metrics']['false_positives']
        
        print(f"  Episode {episode_results['episode_number']}: "
              f"Reward={episode_results['total_reward']:.2f}, "
              f"Blocked={attacks_blocked}/{attacks_detected}, "
              f"FP={false_positives}")
    
    # Test action recommendations
    print("\n💡 Testing action recommendations...")
    sample_state = CyberState(
        timestamp=datetime.now().isoformat(),
        network_traffic={'total': 0.8, 'suspicious': 0.3},
        active_connections=[],
        security_alerts=[{'type': 'malware', 'severity': 'high'}],
        system_health={'cpu': 0.9, 'memory': 0.8, 'disk': 0.6},
        threat_indicators={
            'malware_probability': 0.8,
            'intrusion_probability': 0.3,
            'ddos_probability': 0.1
        },
        previous_actions=['scan_network', 'update_rules'],
        environment_context={'time_of_day': 'night'}
    )
    
    recommendations = rl_system.get_action_recommendations(sample_state)
    print(f"  Top 3 recommended actions:")
    for i, rec in enumerate(recommendations[:3]):
        print(f"    {i+1}. {rec['action']}: Q-value={rec['q_value']:.3f}, Confidence={rec['confidence']:.3f}")
        print(f"       Description: {rec['description']}")
    
    # Test evaluation
    print("\n🔍 Testing agent evaluation...")
    eval_results = rl_system.evaluate(num_episodes=3)
    print(f"  Evaluation over {eval_results['num_episodes']} episodes:")
    print(f"    Mean reward: {eval_results['mean_reward']:.2f} ± {eval_results['std_reward']:.2f}")
    print(f"    Success rate: {eval_results['success_rate']:.2%}")
    print(f"    Mean episode length: {eval_results['mean_episode_length']:.1f}")
    
    # Test model saving/loading
    print("\n💾 Testing model persistence...")
    model_path = "test_cyber_defense_model.pth"
    rl_system.save_model(model_path)
    
    # Load model in new system
    rl_system_2 = CyberDefenseRL(config)
    rl_system_2.load_model(model_path)
    print(f"  Model loaded successfully, episode count: {rl_system_2.episode_count}")
    
    print("\n✅ Reinforcement Learning system implemented and tested")
    print(f"  Database: {rl_system.database_path}")
    print(f"  Action space: {len(ActionType)} actions")
    print(f"  State space: {rl_system.state_dim} dimensions")
    print(f"  Model: Deep Q-Network with Dueling architecture")